Evaluate
\frac{1254729}{248}\approx 5059.391129032
Factor
\frac{3 \cdot 7 \cdot 149 \cdot 401}{2 ^ {3} \cdot 31} = 5059\frac{97}{248} = 5059.3911290322585
Share
Copied to clipboard
\begin{array}{l}\phantom{248)}\phantom{1}\\248\overline{)1254729}\\\end{array}
Use the 1^{st} digit 1 from dividend 1254729
\begin{array}{l}\phantom{248)}0\phantom{2}\\248\overline{)1254729}\\\end{array}
Since 1 is less than 248, use the next digit 2 from dividend 1254729 and add 0 to the quotient
\begin{array}{l}\phantom{248)}0\phantom{3}\\248\overline{)1254729}\\\end{array}
Use the 2^{nd} digit 2 from dividend 1254729
\begin{array}{l}\phantom{248)}00\phantom{4}\\248\overline{)1254729}\\\end{array}
Since 12 is less than 248, use the next digit 5 from dividend 1254729 and add 0 to the quotient
\begin{array}{l}\phantom{248)}00\phantom{5}\\248\overline{)1254729}\\\end{array}
Use the 3^{rd} digit 5 from dividend 1254729
\begin{array}{l}\phantom{248)}000\phantom{6}\\248\overline{)1254729}\\\end{array}
Since 125 is less than 248, use the next digit 4 from dividend 1254729 and add 0 to the quotient
\begin{array}{l}\phantom{248)}000\phantom{7}\\248\overline{)1254729}\\\end{array}
Use the 4^{th} digit 4 from dividend 1254729
\begin{array}{l}\phantom{248)}0005\phantom{8}\\248\overline{)1254729}\\\phantom{248)}\underline{\phantom{}1240\phantom{999}}\\\phantom{248)99}14\\\end{array}
Find closest multiple of 248 to 1254. We see that 5 \times 248 = 1240 is the nearest. Now subtract 1240 from 1254 to get reminder 14. Add 5 to quotient.
\begin{array}{l}\phantom{248)}0005\phantom{9}\\248\overline{)1254729}\\\phantom{248)}\underline{\phantom{}1240\phantom{999}}\\\phantom{248)99}147\\\end{array}
Use the 5^{th} digit 7 from dividend 1254729
\begin{array}{l}\phantom{248)}00050\phantom{10}\\248\overline{)1254729}\\\phantom{248)}\underline{\phantom{}1240\phantom{999}}\\\phantom{248)99}147\\\end{array}
Since 147 is less than 248, use the next digit 2 from dividend 1254729 and add 0 to the quotient
\begin{array}{l}\phantom{248)}00050\phantom{11}\\248\overline{)1254729}\\\phantom{248)}\underline{\phantom{}1240\phantom{999}}\\\phantom{248)99}1472\\\end{array}
Use the 6^{th} digit 2 from dividend 1254729
\begin{array}{l}\phantom{248)}000505\phantom{12}\\248\overline{)1254729}\\\phantom{248)}\underline{\phantom{}1240\phantom{999}}\\\phantom{248)99}1472\\\phantom{248)}\underline{\phantom{99}1240\phantom{9}}\\\phantom{248)999}232\\\end{array}
Find closest multiple of 248 to 1472. We see that 5 \times 248 = 1240 is the nearest. Now subtract 1240 from 1472 to get reminder 232. Add 5 to quotient.
\begin{array}{l}\phantom{248)}000505\phantom{13}\\248\overline{)1254729}\\\phantom{248)}\underline{\phantom{}1240\phantom{999}}\\\phantom{248)99}1472\\\phantom{248)}\underline{\phantom{99}1240\phantom{9}}\\\phantom{248)999}2329\\\end{array}
Use the 7^{th} digit 9 from dividend 1254729
\begin{array}{l}\phantom{248)}0005059\phantom{14}\\248\overline{)1254729}\\\phantom{248)}\underline{\phantom{}1240\phantom{999}}\\\phantom{248)99}1472\\\phantom{248)}\underline{\phantom{99}1240\phantom{9}}\\\phantom{248)999}2329\\\phantom{248)}\underline{\phantom{999}2232\phantom{}}\\\phantom{248)99999}97\\\end{array}
Find closest multiple of 248 to 2329. We see that 9 \times 248 = 2232 is the nearest. Now subtract 2232 from 2329 to get reminder 97. Add 9 to quotient.
\text{Quotient: }5059 \text{Reminder: }97
Since 97 is less than 248, stop the division. The reminder is 97. The topmost line 0005059 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5059.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}