Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

1250=\frac{1}{10}x\times 300+\frac{1}{10}x\left(-1\right)x
Use the distributive property to multiply \frac{1}{10}x by 300-x.
1250=\frac{1}{10}x\times 300+\frac{1}{10}x^{2}\left(-1\right)
Multiply x and x to get x^{2}.
1250=\frac{300}{10}x+\frac{1}{10}x^{2}\left(-1\right)
Multiply \frac{1}{10} and 300 to get \frac{300}{10}.
1250=30x+\frac{1}{10}x^{2}\left(-1\right)
Divide 300 by 10 to get 30.
1250=30x-\frac{1}{10}x^{2}
Multiply \frac{1}{10} and -1 to get -\frac{1}{10}.
30x-\frac{1}{10}x^{2}=1250
Swap sides so that all variable terms are on the left hand side.
30x-\frac{1}{10}x^{2}-1250=0
Subtract 1250 from both sides.
-\frac{1}{10}x^{2}+30x-1250=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-30±\sqrt{30^{2}-4\left(-\frac{1}{10}\right)\left(-1250\right)}}{2\left(-\frac{1}{10}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{10} for a, 30 for b, and -1250 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30±\sqrt{900-4\left(-\frac{1}{10}\right)\left(-1250\right)}}{2\left(-\frac{1}{10}\right)}
Square 30.
x=\frac{-30±\sqrt{900+\frac{2}{5}\left(-1250\right)}}{2\left(-\frac{1}{10}\right)}
Multiply -4 times -\frac{1}{10}.
x=\frac{-30±\sqrt{900-500}}{2\left(-\frac{1}{10}\right)}
Multiply \frac{2}{5} times -1250.
x=\frac{-30±\sqrt{400}}{2\left(-\frac{1}{10}\right)}
Add 900 to -500.
x=\frac{-30±20}{2\left(-\frac{1}{10}\right)}
Take the square root of 400.
x=\frac{-30±20}{-\frac{1}{5}}
Multiply 2 times -\frac{1}{10}.
x=-\frac{10}{-\frac{1}{5}}
Now solve the equation x=\frac{-30±20}{-\frac{1}{5}} when ± is plus. Add -30 to 20.
x=50
Divide -10 by -\frac{1}{5} by multiplying -10 by the reciprocal of -\frac{1}{5}.
x=-\frac{50}{-\frac{1}{5}}
Now solve the equation x=\frac{-30±20}{-\frac{1}{5}} when ± is minus. Subtract 20 from -30.
x=250
Divide -50 by -\frac{1}{5} by multiplying -50 by the reciprocal of -\frac{1}{5}.
x=50 x=250
The equation is now solved.
1250=\frac{1}{10}x\times 300+\frac{1}{10}x\left(-1\right)x
Use the distributive property to multiply \frac{1}{10}x by 300-x.
1250=\frac{1}{10}x\times 300+\frac{1}{10}x^{2}\left(-1\right)
Multiply x and x to get x^{2}.
1250=\frac{300}{10}x+\frac{1}{10}x^{2}\left(-1\right)
Multiply \frac{1}{10} and 300 to get \frac{300}{10}.
1250=30x+\frac{1}{10}x^{2}\left(-1\right)
Divide 300 by 10 to get 30.
1250=30x-\frac{1}{10}x^{2}
Multiply \frac{1}{10} and -1 to get -\frac{1}{10}.
30x-\frac{1}{10}x^{2}=1250
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{10}x^{2}+30x=1250
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{1}{10}x^{2}+30x}{-\frac{1}{10}}=\frac{1250}{-\frac{1}{10}}
Multiply both sides by -10.
x^{2}+\frac{30}{-\frac{1}{10}}x=\frac{1250}{-\frac{1}{10}}
Dividing by -\frac{1}{10} undoes the multiplication by -\frac{1}{10}.
x^{2}-300x=\frac{1250}{-\frac{1}{10}}
Divide 30 by -\frac{1}{10} by multiplying 30 by the reciprocal of -\frac{1}{10}.
x^{2}-300x=-12500
Divide 1250 by -\frac{1}{10} by multiplying 1250 by the reciprocal of -\frac{1}{10}.
x^{2}-300x+\left(-150\right)^{2}=-12500+\left(-150\right)^{2}
Divide -300, the coefficient of the x term, by 2 to get -150. Then add the square of -150 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-300x+22500=-12500+22500
Square -150.
x^{2}-300x+22500=10000
Add -12500 to 22500.
\left(x-150\right)^{2}=10000
Factor x^{2}-300x+22500. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-150\right)^{2}}=\sqrt{10000}
Take the square root of both sides of the equation.
x-150=100 x-150=-100
Simplify.
x=250 x=50
Add 150 to both sides of the equation.