Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

125-25a+9a^{2}=54a+45
Add 9a^{2} to both sides.
125-25a+9a^{2}-54a=45
Subtract 54a from both sides.
125-79a+9a^{2}=45
Combine -25a and -54a to get -79a.
125-79a+9a^{2}-45=0
Subtract 45 from both sides.
80-79a+9a^{2}=0
Subtract 45 from 125 to get 80.
9a^{2}-79a+80=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-79\right)±\sqrt{\left(-79\right)^{2}-4\times 9\times 80}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -79 for b, and 80 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-79\right)±\sqrt{6241-4\times 9\times 80}}{2\times 9}
Square -79.
a=\frac{-\left(-79\right)±\sqrt{6241-36\times 80}}{2\times 9}
Multiply -4 times 9.
a=\frac{-\left(-79\right)±\sqrt{6241-2880}}{2\times 9}
Multiply -36 times 80.
a=\frac{-\left(-79\right)±\sqrt{3361}}{2\times 9}
Add 6241 to -2880.
a=\frac{79±\sqrt{3361}}{2\times 9}
The opposite of -79 is 79.
a=\frac{79±\sqrt{3361}}{18}
Multiply 2 times 9.
a=\frac{\sqrt{3361}+79}{18}
Now solve the equation a=\frac{79±\sqrt{3361}}{18} when ± is plus. Add 79 to \sqrt{3361}.
a=\frac{79-\sqrt{3361}}{18}
Now solve the equation a=\frac{79±\sqrt{3361}}{18} when ± is minus. Subtract \sqrt{3361} from 79.
a=\frac{\sqrt{3361}+79}{18} a=\frac{79-\sqrt{3361}}{18}
The equation is now solved.
125-25a+9a^{2}=54a+45
Add 9a^{2} to both sides.
125-25a+9a^{2}-54a=45
Subtract 54a from both sides.
125-79a+9a^{2}=45
Combine -25a and -54a to get -79a.
-79a+9a^{2}=45-125
Subtract 125 from both sides.
-79a+9a^{2}=-80
Subtract 125 from 45 to get -80.
9a^{2}-79a=-80
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{9a^{2}-79a}{9}=-\frac{80}{9}
Divide both sides by 9.
a^{2}-\frac{79}{9}a=-\frac{80}{9}
Dividing by 9 undoes the multiplication by 9.
a^{2}-\frac{79}{9}a+\left(-\frac{79}{18}\right)^{2}=-\frac{80}{9}+\left(-\frac{79}{18}\right)^{2}
Divide -\frac{79}{9}, the coefficient of the x term, by 2 to get -\frac{79}{18}. Then add the square of -\frac{79}{18} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-\frac{79}{9}a+\frac{6241}{324}=-\frac{80}{9}+\frac{6241}{324}
Square -\frac{79}{18} by squaring both the numerator and the denominator of the fraction.
a^{2}-\frac{79}{9}a+\frac{6241}{324}=\frac{3361}{324}
Add -\frac{80}{9} to \frac{6241}{324} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a-\frac{79}{18}\right)^{2}=\frac{3361}{324}
Factor a^{2}-\frac{79}{9}a+\frac{6241}{324}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{79}{18}\right)^{2}}=\sqrt{\frac{3361}{324}}
Take the square root of both sides of the equation.
a-\frac{79}{18}=\frac{\sqrt{3361}}{18} a-\frac{79}{18}=-\frac{\sqrt{3361}}{18}
Simplify.
a=\frac{\sqrt{3361}+79}{18} a=\frac{79-\sqrt{3361}}{18}
Add \frac{79}{18} to both sides of the equation.