Solve for x (complex solution)
x=\frac{11+\sqrt{4879}i}{250}\approx 0.044+0.279399356i
x=\frac{-\sqrt{4879}i+11}{250}\approx 0.044-0.279399356i
Graph
Share
Copied to clipboard
125x^{2}-11x+10=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 125\times 10}}{2\times 125}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 125 for a, -11 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 125\times 10}}{2\times 125}
Square -11.
x=\frac{-\left(-11\right)±\sqrt{121-500\times 10}}{2\times 125}
Multiply -4 times 125.
x=\frac{-\left(-11\right)±\sqrt{121-5000}}{2\times 125}
Multiply -500 times 10.
x=\frac{-\left(-11\right)±\sqrt{-4879}}{2\times 125}
Add 121 to -5000.
x=\frac{-\left(-11\right)±\sqrt{4879}i}{2\times 125}
Take the square root of -4879.
x=\frac{11±\sqrt{4879}i}{2\times 125}
The opposite of -11 is 11.
x=\frac{11±\sqrt{4879}i}{250}
Multiply 2 times 125.
x=\frac{11+\sqrt{4879}i}{250}
Now solve the equation x=\frac{11±\sqrt{4879}i}{250} when ± is plus. Add 11 to i\sqrt{4879}.
x=\frac{-\sqrt{4879}i+11}{250}
Now solve the equation x=\frac{11±\sqrt{4879}i}{250} when ± is minus. Subtract i\sqrt{4879} from 11.
x=\frac{11+\sqrt{4879}i}{250} x=\frac{-\sqrt{4879}i+11}{250}
The equation is now solved.
125x^{2}-11x+10=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
125x^{2}-11x+10-10=-10
Subtract 10 from both sides of the equation.
125x^{2}-11x=-10
Subtracting 10 from itself leaves 0.
\frac{125x^{2}-11x}{125}=-\frac{10}{125}
Divide both sides by 125.
x^{2}-\frac{11}{125}x=-\frac{10}{125}
Dividing by 125 undoes the multiplication by 125.
x^{2}-\frac{11}{125}x=-\frac{2}{25}
Reduce the fraction \frac{-10}{125} to lowest terms by extracting and canceling out 5.
x^{2}-\frac{11}{125}x+\left(-\frac{11}{250}\right)^{2}=-\frac{2}{25}+\left(-\frac{11}{250}\right)^{2}
Divide -\frac{11}{125}, the coefficient of the x term, by 2 to get -\frac{11}{250}. Then add the square of -\frac{11}{250} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{11}{125}x+\frac{121}{62500}=-\frac{2}{25}+\frac{121}{62500}
Square -\frac{11}{250} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{11}{125}x+\frac{121}{62500}=-\frac{4879}{62500}
Add -\frac{2}{25} to \frac{121}{62500} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{11}{250}\right)^{2}=-\frac{4879}{62500}
Factor x^{2}-\frac{11}{125}x+\frac{121}{62500}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{250}\right)^{2}}=\sqrt{-\frac{4879}{62500}}
Take the square root of both sides of the equation.
x-\frac{11}{250}=\frac{\sqrt{4879}i}{250} x-\frac{11}{250}=-\frac{\sqrt{4879}i}{250}
Simplify.
x=\frac{11+\sqrt{4879}i}{250} x=\frac{-\sqrt{4879}i+11}{250}
Add \frac{11}{250} to both sides of the equation.
x ^ 2 -\frac{11}{125}x +\frac{2}{25} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 125
r + s = \frac{11}{125} rs = \frac{2}{25}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{11}{250} - u s = \frac{11}{250} + u
Two numbers r and s sum up to \frac{11}{125} exactly when the average of the two numbers is \frac{1}{2}*\frac{11}{125} = \frac{11}{250}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{11}{250} - u) (\frac{11}{250} + u) = \frac{2}{25}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{2}{25}
\frac{121}{62500} - u^2 = \frac{2}{25}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{2}{25}-\frac{121}{62500} = \frac{4879}{62500}
Simplify the expression by subtracting \frac{121}{62500} on both sides
u^2 = -\frac{4879}{62500} u = \pm\sqrt{-\frac{4879}{62500}} = \pm \frac{\sqrt{4879}}{250}i
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{11}{250} - \frac{\sqrt{4879}}{250}i = 0.044 - 0.279i s = \frac{11}{250} + \frac{\sqrt{4879}}{250}i = 0.044 + 0.279i
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}