Solve for x
x=\frac{\sqrt{1581}+9}{125}\approx 0.390094326
x=\frac{9-\sqrt{1581}}{125}\approx -0.246094326
Graph
Share
Copied to clipboard
125x^{2}+x-12-19x=0
Subtract 19x from both sides.
125x^{2}-18x-12=0
Combine x and -19x to get -18x.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 125\left(-12\right)}}{2\times 125}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 125 for a, -18 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 125\left(-12\right)}}{2\times 125}
Square -18.
x=\frac{-\left(-18\right)±\sqrt{324-500\left(-12\right)}}{2\times 125}
Multiply -4 times 125.
x=\frac{-\left(-18\right)±\sqrt{324+6000}}{2\times 125}
Multiply -500 times -12.
x=\frac{-\left(-18\right)±\sqrt{6324}}{2\times 125}
Add 324 to 6000.
x=\frac{-\left(-18\right)±2\sqrt{1581}}{2\times 125}
Take the square root of 6324.
x=\frac{18±2\sqrt{1581}}{2\times 125}
The opposite of -18 is 18.
x=\frac{18±2\sqrt{1581}}{250}
Multiply 2 times 125.
x=\frac{2\sqrt{1581}+18}{250}
Now solve the equation x=\frac{18±2\sqrt{1581}}{250} when ± is plus. Add 18 to 2\sqrt{1581}.
x=\frac{\sqrt{1581}+9}{125}
Divide 18+2\sqrt{1581} by 250.
x=\frac{18-2\sqrt{1581}}{250}
Now solve the equation x=\frac{18±2\sqrt{1581}}{250} when ± is minus. Subtract 2\sqrt{1581} from 18.
x=\frac{9-\sqrt{1581}}{125}
Divide 18-2\sqrt{1581} by 250.
x=\frac{\sqrt{1581}+9}{125} x=\frac{9-\sqrt{1581}}{125}
The equation is now solved.
125x^{2}+x-12-19x=0
Subtract 19x from both sides.
125x^{2}-18x-12=0
Combine x and -19x to get -18x.
125x^{2}-18x=12
Add 12 to both sides. Anything plus zero gives itself.
\frac{125x^{2}-18x}{125}=\frac{12}{125}
Divide both sides by 125.
x^{2}-\frac{18}{125}x=\frac{12}{125}
Dividing by 125 undoes the multiplication by 125.
x^{2}-\frac{18}{125}x+\left(-\frac{9}{125}\right)^{2}=\frac{12}{125}+\left(-\frac{9}{125}\right)^{2}
Divide -\frac{18}{125}, the coefficient of the x term, by 2 to get -\frac{9}{125}. Then add the square of -\frac{9}{125} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{18}{125}x+\frac{81}{15625}=\frac{12}{125}+\frac{81}{15625}
Square -\frac{9}{125} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{18}{125}x+\frac{81}{15625}=\frac{1581}{15625}
Add \frac{12}{125} to \frac{81}{15625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{9}{125}\right)^{2}=\frac{1581}{15625}
Factor x^{2}-\frac{18}{125}x+\frac{81}{15625}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{125}\right)^{2}}=\sqrt{\frac{1581}{15625}}
Take the square root of both sides of the equation.
x-\frac{9}{125}=\frac{\sqrt{1581}}{125} x-\frac{9}{125}=-\frac{\sqrt{1581}}{125}
Simplify.
x=\frac{\sqrt{1581}+9}{125} x=\frac{9-\sqrt{1581}}{125}
Add \frac{9}{125} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}