Solve for m
m = \frac{6}{5} = 1\frac{1}{5} = 1.2
m = -\frac{6}{5} = -1\frac{1}{5} = -1.2
Share
Copied to clipboard
m^{2}=\frac{180}{125}
Divide both sides by 125.
m^{2}=\frac{36}{25}
Reduce the fraction \frac{180}{125} to lowest terms by extracting and canceling out 5.
m^{2}-\frac{36}{25}=0
Subtract \frac{36}{25} from both sides.
25m^{2}-36=0
Multiply both sides by 25.
\left(5m-6\right)\left(5m+6\right)=0
Consider 25m^{2}-36. Rewrite 25m^{2}-36 as \left(5m\right)^{2}-6^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
m=\frac{6}{5} m=-\frac{6}{5}
To find equation solutions, solve 5m-6=0 and 5m+6=0.
m^{2}=\frac{180}{125}
Divide both sides by 125.
m^{2}=\frac{36}{25}
Reduce the fraction \frac{180}{125} to lowest terms by extracting and canceling out 5.
m=\frac{6}{5} m=-\frac{6}{5}
Take the square root of both sides of the equation.
m^{2}=\frac{180}{125}
Divide both sides by 125.
m^{2}=\frac{36}{25}
Reduce the fraction \frac{180}{125} to lowest terms by extracting and canceling out 5.
m^{2}-\frac{36}{25}=0
Subtract \frac{36}{25} from both sides.
m=\frac{0±\sqrt{0^{2}-4\left(-\frac{36}{25}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{36}{25} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{0±\sqrt{-4\left(-\frac{36}{25}\right)}}{2}
Square 0.
m=\frac{0±\sqrt{\frac{144}{25}}}{2}
Multiply -4 times -\frac{36}{25}.
m=\frac{0±\frac{12}{5}}{2}
Take the square root of \frac{144}{25}.
m=\frac{6}{5}
Now solve the equation m=\frac{0±\frac{12}{5}}{2} when ± is plus.
m=-\frac{6}{5}
Now solve the equation m=\frac{0±\frac{12}{5}}{2} when ± is minus.
m=\frac{6}{5} m=-\frac{6}{5}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}