Solve for x
x = -\frac{1199}{375} = -3\frac{74}{375} \approx -3.197333333
Graph
Share
Copied to clipboard
375x-125+1324=\left(28-4x\right)\times 0\times 5
Use the distributive property to multiply 125 by 3x-1.
375x+1199=\left(28-4x\right)\times 0\times 5
Add -125 and 1324 to get 1199.
375x+1199=\left(28-4x\right)\times 0
Multiply 0 and 5 to get 0.
375x+1199=0
Anything times zero gives zero.
375x=-1199
Subtract 1199 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-1199}{375}
Divide both sides by 375.
x=-\frac{1199}{375}
Fraction \frac{-1199}{375} can be rewritten as -\frac{1199}{375} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}