Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

125\left(8x^{3}-12x^{2}+6x-1\right)+2=66
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(2x-1\right)^{3}.
1000x^{3}-1500x^{2}+750x-125+2=66
Use the distributive property to multiply 125 by 8x^{3}-12x^{2}+6x-1.
1000x^{3}-1500x^{2}+750x-123=66
Add -125 and 2 to get -123.
1000x^{3}-1500x^{2}+750x-123-66=0
Subtract 66 from both sides.
1000x^{3}-1500x^{2}+750x-189=0
Subtract 66 from -123 to get -189.
±\frac{189}{1000},±\frac{189}{500},±\frac{189}{250},±\frac{189}{200},±\frac{189}{125},±\frac{189}{100},±\frac{189}{50},±\frac{189}{40},±\frac{189}{25},±\frac{189}{20},±\frac{189}{10},±\frac{189}{8},±\frac{189}{5},±\frac{189}{4},±\frac{189}{2},±189,±\frac{63}{1000},±\frac{63}{500},±\frac{63}{250},±\frac{63}{200},±\frac{63}{125},±\frac{63}{100},±\frac{63}{50},±\frac{63}{40},±\frac{63}{25},±\frac{63}{20},±\frac{63}{10},±\frac{63}{8},±\frac{63}{5},±\frac{63}{4},±\frac{63}{2},±63,±\frac{27}{1000},±\frac{27}{500},±\frac{27}{250},±\frac{27}{200},±\frac{27}{125},±\frac{27}{100},±\frac{27}{50},±\frac{27}{40},±\frac{27}{25},±\frac{27}{20},±\frac{27}{10},±\frac{27}{8},±\frac{27}{5},±\frac{27}{4},±\frac{27}{2},±27,±\frac{21}{1000},±\frac{21}{500},±\frac{21}{250},±\frac{21}{200},±\frac{21}{125},±\frac{21}{100},±\frac{21}{50},±\frac{21}{40},±\frac{21}{25},±\frac{21}{20},±\frac{21}{10},±\frac{21}{8},±\frac{21}{5},±\frac{21}{4},±\frac{21}{2},±21,±\frac{9}{1000},±\frac{9}{500},±\frac{9}{250},±\frac{9}{200},±\frac{9}{125},±\frac{9}{100},±\frac{9}{50},±\frac{9}{40},±\frac{9}{25},±\frac{9}{20},±\frac{9}{10},±\frac{9}{8},±\frac{9}{5},±\frac{9}{4},±\frac{9}{2},±9,±\frac{7}{1000},±\frac{7}{500},±\frac{7}{250},±\frac{7}{200},±\frac{7}{125},±\frac{7}{100},±\frac{7}{50},±\frac{7}{40},±\frac{7}{25},±\frac{7}{20},±\frac{7}{10},±\frac{7}{8},±\frac{7}{5},±\frac{7}{4},±\frac{7}{2},±7,±\frac{3}{1000},±\frac{3}{500},±\frac{3}{250},±\frac{3}{200},±\frac{3}{125},±\frac{3}{100},±\frac{3}{50},±\frac{3}{40},±\frac{3}{25},±\frac{3}{20},±\frac{3}{10},±\frac{3}{8},±\frac{3}{5},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{1000},±\frac{1}{500},±\frac{1}{250},±\frac{1}{200},±\frac{1}{125},±\frac{1}{100},±\frac{1}{50},±\frac{1}{40},±\frac{1}{25},±\frac{1}{20},±\frac{1}{10},±\frac{1}{8},±\frac{1}{5},±\frac{1}{4},±\frac{1}{2},±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -189 and q divides the leading coefficient 1000. List all candidates \frac{p}{q}.
x=\frac{9}{10}
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
100x^{2}-60x+21=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 1000x^{3}-1500x^{2}+750x-189 by 10\left(x-\frac{9}{10}\right)=10x-9 to get 100x^{2}-60x+21. Solve the equation where the result equals to 0.
x=\frac{-\left(-60\right)±\sqrt{\left(-60\right)^{2}-4\times 100\times 21}}{2\times 100}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 100 for a, -60 for b, and 21 for c in the quadratic formula.
x=\frac{60±\sqrt{-4800}}{200}
Do the calculations.
x=-\frac{\sqrt{3}i}{5}+\frac{3}{10} x=\frac{\sqrt{3}i}{5}+\frac{3}{10}
Solve the equation 100x^{2}-60x+21=0 when ± is plus and when ± is minus.
x=\frac{9}{10} x=-\frac{\sqrt{3}i}{5}+\frac{3}{10} x=\frac{\sqrt{3}i}{5}+\frac{3}{10}
List all found solutions.
125\left(8x^{3}-12x^{2}+6x-1\right)+2=66
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(2x-1\right)^{3}.
1000x^{3}-1500x^{2}+750x-125+2=66
Use the distributive property to multiply 125 by 8x^{3}-12x^{2}+6x-1.
1000x^{3}-1500x^{2}+750x-123=66
Add -125 and 2 to get -123.
1000x^{3}-1500x^{2}+750x-123-66=0
Subtract 66 from both sides.
1000x^{3}-1500x^{2}+750x-189=0
Subtract 66 from -123 to get -189.
±\frac{189}{1000},±\frac{189}{500},±\frac{189}{250},±\frac{189}{200},±\frac{189}{125},±\frac{189}{100},±\frac{189}{50},±\frac{189}{40},±\frac{189}{25},±\frac{189}{20},±\frac{189}{10},±\frac{189}{8},±\frac{189}{5},±\frac{189}{4},±\frac{189}{2},±189,±\frac{63}{1000},±\frac{63}{500},±\frac{63}{250},±\frac{63}{200},±\frac{63}{125},±\frac{63}{100},±\frac{63}{50},±\frac{63}{40},±\frac{63}{25},±\frac{63}{20},±\frac{63}{10},±\frac{63}{8},±\frac{63}{5},±\frac{63}{4},±\frac{63}{2},±63,±\frac{27}{1000},±\frac{27}{500},±\frac{27}{250},±\frac{27}{200},±\frac{27}{125},±\frac{27}{100},±\frac{27}{50},±\frac{27}{40},±\frac{27}{25},±\frac{27}{20},±\frac{27}{10},±\frac{27}{8},±\frac{27}{5},±\frac{27}{4},±\frac{27}{2},±27,±\frac{21}{1000},±\frac{21}{500},±\frac{21}{250},±\frac{21}{200},±\frac{21}{125},±\frac{21}{100},±\frac{21}{50},±\frac{21}{40},±\frac{21}{25},±\frac{21}{20},±\frac{21}{10},±\frac{21}{8},±\frac{21}{5},±\frac{21}{4},±\frac{21}{2},±21,±\frac{9}{1000},±\frac{9}{500},±\frac{9}{250},±\frac{9}{200},±\frac{9}{125},±\frac{9}{100},±\frac{9}{50},±\frac{9}{40},±\frac{9}{25},±\frac{9}{20},±\frac{9}{10},±\frac{9}{8},±\frac{9}{5},±\frac{9}{4},±\frac{9}{2},±9,±\frac{7}{1000},±\frac{7}{500},±\frac{7}{250},±\frac{7}{200},±\frac{7}{125},±\frac{7}{100},±\frac{7}{50},±\frac{7}{40},±\frac{7}{25},±\frac{7}{20},±\frac{7}{10},±\frac{7}{8},±\frac{7}{5},±\frac{7}{4},±\frac{7}{2},±7,±\frac{3}{1000},±\frac{3}{500},±\frac{3}{250},±\frac{3}{200},±\frac{3}{125},±\frac{3}{100},±\frac{3}{50},±\frac{3}{40},±\frac{3}{25},±\frac{3}{20},±\frac{3}{10},±\frac{3}{8},±\frac{3}{5},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{1000},±\frac{1}{500},±\frac{1}{250},±\frac{1}{200},±\frac{1}{125},±\frac{1}{100},±\frac{1}{50},±\frac{1}{40},±\frac{1}{25},±\frac{1}{20},±\frac{1}{10},±\frac{1}{8},±\frac{1}{5},±\frac{1}{4},±\frac{1}{2},±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -189 and q divides the leading coefficient 1000. List all candidates \frac{p}{q}.
x=\frac{9}{10}
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
100x^{2}-60x+21=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 1000x^{3}-1500x^{2}+750x-189 by 10\left(x-\frac{9}{10}\right)=10x-9 to get 100x^{2}-60x+21. Solve the equation where the result equals to 0.
x=\frac{-\left(-60\right)±\sqrt{\left(-60\right)^{2}-4\times 100\times 21}}{2\times 100}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 100 for a, -60 for b, and 21 for c in the quadratic formula.
x=\frac{60±\sqrt{-4800}}{200}
Do the calculations.
x\in \emptyset
Since the square root of a negative number is not defined in the real field, there are no solutions.
x=\frac{9}{10}
List all found solutions.