Evaluate
\frac{125}{48}\approx 2.604166667
Factor
\frac{5 ^ {3}}{2 ^ {4} \cdot 3} = 2\frac{29}{48} = 2.6041666666666665
Share
Copied to clipboard
\begin{array}{l}\phantom{48)}\phantom{1}\\48\overline{)125}\\\end{array}
Use the 1^{st} digit 1 from dividend 125
\begin{array}{l}\phantom{48)}0\phantom{2}\\48\overline{)125}\\\end{array}
Since 1 is less than 48, use the next digit 2 from dividend 125 and add 0 to the quotient
\begin{array}{l}\phantom{48)}0\phantom{3}\\48\overline{)125}\\\end{array}
Use the 2^{nd} digit 2 from dividend 125
\begin{array}{l}\phantom{48)}00\phantom{4}\\48\overline{)125}\\\end{array}
Since 12 is less than 48, use the next digit 5 from dividend 125 and add 0 to the quotient
\begin{array}{l}\phantom{48)}00\phantom{5}\\48\overline{)125}\\\end{array}
Use the 3^{rd} digit 5 from dividend 125
\begin{array}{l}\phantom{48)}002\phantom{6}\\48\overline{)125}\\\phantom{48)}\underline{\phantom{9}96\phantom{}}\\\phantom{48)9}29\\\end{array}
Find closest multiple of 48 to 125. We see that 2 \times 48 = 96 is the nearest. Now subtract 96 from 125 to get reminder 29. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }29
Since 29 is less than 48, stop the division. The reminder is 29. The topmost line 002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}