Solve for t
t=\log_{1.0165}\left(\frac{165}{6604}\right)\approx -225.444882628
Share
Copied to clipboard
125=\frac{82.55\left(1+0.0165\right)^{t}}{1+0.0165-1}
Multiply 5000 and 0.01651 to get 82.55.
125=\frac{82.55\times 1.0165^{t}}{1+0.0165-1}
Add 1 and 0.0165 to get 1.0165.
125=\frac{82.55\times 1.0165^{t}}{1.0165-1}
Add 1 and 0.0165 to get 1.0165.
125=\frac{82.55\times 1.0165^{t}}{0.0165}
Subtract 1 from 1.0165 to get 0.0165.
125=\frac{165100}{33}\times 1.0165^{t}
Divide 82.55\times 1.0165^{t} by 0.0165 to get \frac{165100}{33}\times 1.0165^{t}.
\frac{165100}{33}\times 1.0165^{t}=125
Swap sides so that all variable terms are on the left hand side.
1.0165^{t}=\frac{165}{6604}
Divide both sides of the equation by \frac{165100}{33}, which is the same as multiplying both sides by the reciprocal of the fraction.
\log(1.0165^{t})=\log(\frac{165}{6604})
Take the logarithm of both sides of the equation.
t\log(1.0165)=\log(\frac{165}{6604})
The logarithm of a number raised to a power is the power times the logarithm of the number.
t=\frac{\log(\frac{165}{6604})}{\log(1.0165)}
Divide both sides by \log(1.0165).
t=\log_{1.0165}\left(\frac{165}{6604}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}