Evaluate
\frac{125}{22}\approx 5.681818182
Factor
\frac{5 ^ {3}}{2 \cdot 11} = 5\frac{15}{22} = 5.681818181818182
Share
Copied to clipboard
\begin{array}{l}\phantom{22)}\phantom{1}\\22\overline{)125}\\\end{array}
Use the 1^{st} digit 1 from dividend 125
\begin{array}{l}\phantom{22)}0\phantom{2}\\22\overline{)125}\\\end{array}
Since 1 is less than 22, use the next digit 2 from dividend 125 and add 0 to the quotient
\begin{array}{l}\phantom{22)}0\phantom{3}\\22\overline{)125}\\\end{array}
Use the 2^{nd} digit 2 from dividend 125
\begin{array}{l}\phantom{22)}00\phantom{4}\\22\overline{)125}\\\end{array}
Since 12 is less than 22, use the next digit 5 from dividend 125 and add 0 to the quotient
\begin{array}{l}\phantom{22)}00\phantom{5}\\22\overline{)125}\\\end{array}
Use the 3^{rd} digit 5 from dividend 125
\begin{array}{l}\phantom{22)}005\phantom{6}\\22\overline{)125}\\\phantom{22)}\underline{\phantom{}110\phantom{}}\\\phantom{22)9}15\\\end{array}
Find closest multiple of 22 to 125. We see that 5 \times 22 = 110 is the nearest. Now subtract 110 from 125 to get reminder 15. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }15
Since 15 is less than 22, stop the division. The reminder is 15. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}