Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(125x+2\right)
Factor out x.
125x^{2}+2x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-2±\sqrt{2^{2}}}{2\times 125}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±2}{2\times 125}
Take the square root of 2^{2}.
x=\frac{-2±2}{250}
Multiply 2 times 125.
x=\frac{0}{250}
Now solve the equation x=\frac{-2±2}{250} when ± is plus. Add -2 to 2.
x=0
Divide 0 by 250.
x=-\frac{4}{250}
Now solve the equation x=\frac{-2±2}{250} when ± is minus. Subtract 2 from -2.
x=-\frac{2}{125}
Reduce the fraction \frac{-4}{250} to lowest terms by extracting and canceling out 2.
125x^{2}+2x=125x\left(x-\left(-\frac{2}{125}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -\frac{2}{125} for x_{2}.
125x^{2}+2x=125x\left(x+\frac{2}{125}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
125x^{2}+2x=125x\times \frac{125x+2}{125}
Add \frac{2}{125} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
125x^{2}+2x=x\left(125x+2\right)
Cancel out 125, the greatest common factor in 125 and 125.