Evaluate
\frac{618827}{521}\approx 1187.767754319
Factor
\frac{11 \cdot 101 \cdot 557}{521} = 1187\frac{400}{521} = 1187.767754318618
Share
Copied to clipboard
\begin{array}{l}\phantom{1042)}\phantom{1}\\1042\overline{)1237654}\\\end{array}
Use the 1^{st} digit 1 from dividend 1237654
\begin{array}{l}\phantom{1042)}0\phantom{2}\\1042\overline{)1237654}\\\end{array}
Since 1 is less than 1042, use the next digit 2 from dividend 1237654 and add 0 to the quotient
\begin{array}{l}\phantom{1042)}0\phantom{3}\\1042\overline{)1237654}\\\end{array}
Use the 2^{nd} digit 2 from dividend 1237654
\begin{array}{l}\phantom{1042)}00\phantom{4}\\1042\overline{)1237654}\\\end{array}
Since 12 is less than 1042, use the next digit 3 from dividend 1237654 and add 0 to the quotient
\begin{array}{l}\phantom{1042)}00\phantom{5}\\1042\overline{)1237654}\\\end{array}
Use the 3^{rd} digit 3 from dividend 1237654
\begin{array}{l}\phantom{1042)}000\phantom{6}\\1042\overline{)1237654}\\\end{array}
Since 123 is less than 1042, use the next digit 7 from dividend 1237654 and add 0 to the quotient
\begin{array}{l}\phantom{1042)}000\phantom{7}\\1042\overline{)1237654}\\\end{array}
Use the 4^{th} digit 7 from dividend 1237654
\begin{array}{l}\phantom{1042)}0001\phantom{8}\\1042\overline{)1237654}\\\phantom{1042)}\underline{\phantom{}1042\phantom{999}}\\\phantom{1042)9}195\\\end{array}
Find closest multiple of 1042 to 1237. We see that 1 \times 1042 = 1042 is the nearest. Now subtract 1042 from 1237 to get reminder 195. Add 1 to quotient.
\begin{array}{l}\phantom{1042)}0001\phantom{9}\\1042\overline{)1237654}\\\phantom{1042)}\underline{\phantom{}1042\phantom{999}}\\\phantom{1042)9}1956\\\end{array}
Use the 5^{th} digit 6 from dividend 1237654
\begin{array}{l}\phantom{1042)}00011\phantom{10}\\1042\overline{)1237654}\\\phantom{1042)}\underline{\phantom{}1042\phantom{999}}\\\phantom{1042)9}1956\\\phantom{1042)}\underline{\phantom{9}1042\phantom{99}}\\\phantom{1042)99}914\\\end{array}
Find closest multiple of 1042 to 1956. We see that 1 \times 1042 = 1042 is the nearest. Now subtract 1042 from 1956 to get reminder 914. Add 1 to quotient.
\begin{array}{l}\phantom{1042)}00011\phantom{11}\\1042\overline{)1237654}\\\phantom{1042)}\underline{\phantom{}1042\phantom{999}}\\\phantom{1042)9}1956\\\phantom{1042)}\underline{\phantom{9}1042\phantom{99}}\\\phantom{1042)99}9145\\\end{array}
Use the 6^{th} digit 5 from dividend 1237654
\begin{array}{l}\phantom{1042)}000118\phantom{12}\\1042\overline{)1237654}\\\phantom{1042)}\underline{\phantom{}1042\phantom{999}}\\\phantom{1042)9}1956\\\phantom{1042)}\underline{\phantom{9}1042\phantom{99}}\\\phantom{1042)99}9145\\\phantom{1042)}\underline{\phantom{99}8336\phantom{9}}\\\phantom{1042)999}809\\\end{array}
Find closest multiple of 1042 to 9145. We see that 8 \times 1042 = 8336 is the nearest. Now subtract 8336 from 9145 to get reminder 809. Add 8 to quotient.
\begin{array}{l}\phantom{1042)}000118\phantom{13}\\1042\overline{)1237654}\\\phantom{1042)}\underline{\phantom{}1042\phantom{999}}\\\phantom{1042)9}1956\\\phantom{1042)}\underline{\phantom{9}1042\phantom{99}}\\\phantom{1042)99}9145\\\phantom{1042)}\underline{\phantom{99}8336\phantom{9}}\\\phantom{1042)999}8094\\\end{array}
Use the 7^{th} digit 4 from dividend 1237654
\begin{array}{l}\phantom{1042)}0001187\phantom{14}\\1042\overline{)1237654}\\\phantom{1042)}\underline{\phantom{}1042\phantom{999}}\\\phantom{1042)9}1956\\\phantom{1042)}\underline{\phantom{9}1042\phantom{99}}\\\phantom{1042)99}9145\\\phantom{1042)}\underline{\phantom{99}8336\phantom{9}}\\\phantom{1042)999}8094\\\phantom{1042)}\underline{\phantom{999}7294\phantom{}}\\\phantom{1042)9999}800\\\end{array}
Find closest multiple of 1042 to 8094. We see that 7 \times 1042 = 7294 is the nearest. Now subtract 7294 from 8094 to get reminder 800. Add 7 to quotient.
\text{Quotient: }1187 \text{Reminder: }800
Since 800 is less than 1042, stop the division. The reminder is 800. The topmost line 0001187 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1187.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}