Evaluate
112211
Factor
11\times 101^{2}
Share
Copied to clipboard
\begin{array}{l}\phantom{11)}\phantom{1}\\11\overline{)1234321}\\\end{array}
Use the 1^{st} digit 1 from dividend 1234321
\begin{array}{l}\phantom{11)}0\phantom{2}\\11\overline{)1234321}\\\end{array}
Since 1 is less than 11, use the next digit 2 from dividend 1234321 and add 0 to the quotient
\begin{array}{l}\phantom{11)}0\phantom{3}\\11\overline{)1234321}\\\end{array}
Use the 2^{nd} digit 2 from dividend 1234321
\begin{array}{l}\phantom{11)}01\phantom{4}\\11\overline{)1234321}\\\phantom{11)}\underline{\phantom{}11\phantom{99999}}\\\phantom{11)9}1\\\end{array}
Find closest multiple of 11 to 12. We see that 1 \times 11 = 11 is the nearest. Now subtract 11 from 12 to get reminder 1. Add 1 to quotient.
\begin{array}{l}\phantom{11)}01\phantom{5}\\11\overline{)1234321}\\\phantom{11)}\underline{\phantom{}11\phantom{99999}}\\\phantom{11)9}13\\\end{array}
Use the 3^{rd} digit 3 from dividend 1234321
\begin{array}{l}\phantom{11)}011\phantom{6}\\11\overline{)1234321}\\\phantom{11)}\underline{\phantom{}11\phantom{99999}}\\\phantom{11)9}13\\\phantom{11)}\underline{\phantom{9}11\phantom{9999}}\\\phantom{11)99}2\\\end{array}
Find closest multiple of 11 to 13. We see that 1 \times 11 = 11 is the nearest. Now subtract 11 from 13 to get reminder 2. Add 1 to quotient.
\begin{array}{l}\phantom{11)}011\phantom{7}\\11\overline{)1234321}\\\phantom{11)}\underline{\phantom{}11\phantom{99999}}\\\phantom{11)9}13\\\phantom{11)}\underline{\phantom{9}11\phantom{9999}}\\\phantom{11)99}24\\\end{array}
Use the 4^{th} digit 4 from dividend 1234321
\begin{array}{l}\phantom{11)}0112\phantom{8}\\11\overline{)1234321}\\\phantom{11)}\underline{\phantom{}11\phantom{99999}}\\\phantom{11)9}13\\\phantom{11)}\underline{\phantom{9}11\phantom{9999}}\\\phantom{11)99}24\\\phantom{11)}\underline{\phantom{99}22\phantom{999}}\\\phantom{11)999}2\\\end{array}
Find closest multiple of 11 to 24. We see that 2 \times 11 = 22 is the nearest. Now subtract 22 from 24 to get reminder 2. Add 2 to quotient.
\begin{array}{l}\phantom{11)}0112\phantom{9}\\11\overline{)1234321}\\\phantom{11)}\underline{\phantom{}11\phantom{99999}}\\\phantom{11)9}13\\\phantom{11)}\underline{\phantom{9}11\phantom{9999}}\\\phantom{11)99}24\\\phantom{11)}\underline{\phantom{99}22\phantom{999}}\\\phantom{11)999}23\\\end{array}
Use the 5^{th} digit 3 from dividend 1234321
\begin{array}{l}\phantom{11)}01122\phantom{10}\\11\overline{)1234321}\\\phantom{11)}\underline{\phantom{}11\phantom{99999}}\\\phantom{11)9}13\\\phantom{11)}\underline{\phantom{9}11\phantom{9999}}\\\phantom{11)99}24\\\phantom{11)}\underline{\phantom{99}22\phantom{999}}\\\phantom{11)999}23\\\phantom{11)}\underline{\phantom{999}22\phantom{99}}\\\phantom{11)9999}1\\\end{array}
Find closest multiple of 11 to 23. We see that 2 \times 11 = 22 is the nearest. Now subtract 22 from 23 to get reminder 1. Add 2 to quotient.
\begin{array}{l}\phantom{11)}01122\phantom{11}\\11\overline{)1234321}\\\phantom{11)}\underline{\phantom{}11\phantom{99999}}\\\phantom{11)9}13\\\phantom{11)}\underline{\phantom{9}11\phantom{9999}}\\\phantom{11)99}24\\\phantom{11)}\underline{\phantom{99}22\phantom{999}}\\\phantom{11)999}23\\\phantom{11)}\underline{\phantom{999}22\phantom{99}}\\\phantom{11)9999}12\\\end{array}
Use the 6^{th} digit 2 from dividend 1234321
\begin{array}{l}\phantom{11)}011221\phantom{12}\\11\overline{)1234321}\\\phantom{11)}\underline{\phantom{}11\phantom{99999}}\\\phantom{11)9}13\\\phantom{11)}\underline{\phantom{9}11\phantom{9999}}\\\phantom{11)99}24\\\phantom{11)}\underline{\phantom{99}22\phantom{999}}\\\phantom{11)999}23\\\phantom{11)}\underline{\phantom{999}22\phantom{99}}\\\phantom{11)9999}12\\\phantom{11)}\underline{\phantom{9999}11\phantom{9}}\\\phantom{11)99999}1\\\end{array}
Find closest multiple of 11 to 12. We see that 1 \times 11 = 11 is the nearest. Now subtract 11 from 12 to get reminder 1. Add 1 to quotient.
\begin{array}{l}\phantom{11)}011221\phantom{13}\\11\overline{)1234321}\\\phantom{11)}\underline{\phantom{}11\phantom{99999}}\\\phantom{11)9}13\\\phantom{11)}\underline{\phantom{9}11\phantom{9999}}\\\phantom{11)99}24\\\phantom{11)}\underline{\phantom{99}22\phantom{999}}\\\phantom{11)999}23\\\phantom{11)}\underline{\phantom{999}22\phantom{99}}\\\phantom{11)9999}12\\\phantom{11)}\underline{\phantom{9999}11\phantom{9}}\\\phantom{11)99999}11\\\end{array}
Use the 7^{th} digit 1 from dividend 1234321
\begin{array}{l}\phantom{11)}0112211\phantom{14}\\11\overline{)1234321}\\\phantom{11)}\underline{\phantom{}11\phantom{99999}}\\\phantom{11)9}13\\\phantom{11)}\underline{\phantom{9}11\phantom{9999}}\\\phantom{11)99}24\\\phantom{11)}\underline{\phantom{99}22\phantom{999}}\\\phantom{11)999}23\\\phantom{11)}\underline{\phantom{999}22\phantom{99}}\\\phantom{11)9999}12\\\phantom{11)}\underline{\phantom{9999}11\phantom{9}}\\\phantom{11)99999}11\\\phantom{11)}\underline{\phantom{99999}11\phantom{}}\\\phantom{11)9999999}0\\\end{array}
Find closest multiple of 11 to 11. We see that 1 \times 11 = 11 is the nearest. Now subtract 11 from 11 to get reminder 0. Add 1 to quotient.
\text{Quotient: }112211 \text{Reminder: }0
Since 0 is less than 11, stop the division. The reminder is 0. The topmost line 0112211 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 112211.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}