Evaluate
\frac{607}{282}\approx 2.15248227
Factor
\frac{607}{2 \cdot 3 \cdot 47} = 2\frac{43}{282} = 2.152482269503546
Share
Copied to clipboard
\begin{array}{l}\phantom{564)}\phantom{1}\\564\overline{)1214}\\\end{array}
Use the 1^{st} digit 1 from dividend 1214
\begin{array}{l}\phantom{564)}0\phantom{2}\\564\overline{)1214}\\\end{array}
Since 1 is less than 564, use the next digit 2 from dividend 1214 and add 0 to the quotient
\begin{array}{l}\phantom{564)}0\phantom{3}\\564\overline{)1214}\\\end{array}
Use the 2^{nd} digit 2 from dividend 1214
\begin{array}{l}\phantom{564)}00\phantom{4}\\564\overline{)1214}\\\end{array}
Since 12 is less than 564, use the next digit 1 from dividend 1214 and add 0 to the quotient
\begin{array}{l}\phantom{564)}00\phantom{5}\\564\overline{)1214}\\\end{array}
Use the 3^{rd} digit 1 from dividend 1214
\begin{array}{l}\phantom{564)}000\phantom{6}\\564\overline{)1214}\\\end{array}
Since 121 is less than 564, use the next digit 4 from dividend 1214 and add 0 to the quotient
\begin{array}{l}\phantom{564)}000\phantom{7}\\564\overline{)1214}\\\end{array}
Use the 4^{th} digit 4 from dividend 1214
\begin{array}{l}\phantom{564)}0002\phantom{8}\\564\overline{)1214}\\\phantom{564)}\underline{\phantom{}1128\phantom{}}\\\phantom{564)99}86\\\end{array}
Find closest multiple of 564 to 1214. We see that 2 \times 564 = 1128 is the nearest. Now subtract 1128 from 1214 to get reminder 86. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }86
Since 86 is less than 564, stop the division. The reminder is 86. The topmost line 0002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}