Factor
10\left(11x-10\right)^{2}
Evaluate
10\left(11x-10\right)^{2}
Graph
Share
Copied to clipboard
10\left(121x^{2}-220x+100\right)
Factor out 10.
\left(11x-10\right)^{2}
Consider 121x^{2}-220x+100. Use the perfect square formula, a^{2}-2ab+b^{2}=\left(a-b\right)^{2}, where a=11x and b=10.
10\left(11x-10\right)^{2}
Rewrite the complete factored expression.
factor(1210x^{2}-2200x+1000)
This trinomial has the form of a trinomial square, perhaps multiplied by a common factor. Trinomial squares can be factored by finding the square roots of the leading and trailing terms.
gcf(1210,-2200,1000)=10
Find the greatest common factor of the coefficients.
10\left(121x^{2}-220x+100\right)
Factor out 10.
\sqrt{121x^{2}}=11x
Find the square root of the leading term, 121x^{2}.
\sqrt{100}=10
Find the square root of the trailing term, 100.
10\left(11x-10\right)^{2}
The trinomial square is the square of the binomial that is the sum or difference of the square roots of the leading and trailing terms, with the sign determined by the sign of the middle term of the trinomial square.
1210x^{2}-2200x+1000=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-2200\right)±\sqrt{\left(-2200\right)^{2}-4\times 1210\times 1000}}{2\times 1210}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2200\right)±\sqrt{4840000-4\times 1210\times 1000}}{2\times 1210}
Square -2200.
x=\frac{-\left(-2200\right)±\sqrt{4840000-4840\times 1000}}{2\times 1210}
Multiply -4 times 1210.
x=\frac{-\left(-2200\right)±\sqrt{4840000-4840000}}{2\times 1210}
Multiply -4840 times 1000.
x=\frac{-\left(-2200\right)±\sqrt{0}}{2\times 1210}
Add 4840000 to -4840000.
x=\frac{-\left(-2200\right)±0}{2\times 1210}
Take the square root of 0.
x=\frac{2200±0}{2\times 1210}
The opposite of -2200 is 2200.
x=\frac{2200±0}{2420}
Multiply 2 times 1210.
1210x^{2}-2200x+1000=1210\left(x-\frac{10}{11}\right)\left(x-\frac{10}{11}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{10}{11} for x_{1} and \frac{10}{11} for x_{2}.
1210x^{2}-2200x+1000=1210\times \frac{11x-10}{11}\left(x-\frac{10}{11}\right)
Subtract \frac{10}{11} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
1210x^{2}-2200x+1000=1210\times \frac{11x-10}{11}\times \frac{11x-10}{11}
Subtract \frac{10}{11} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
1210x^{2}-2200x+1000=1210\times \frac{\left(11x-10\right)\left(11x-10\right)}{11\times 11}
Multiply \frac{11x-10}{11} times \frac{11x-10}{11} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
1210x^{2}-2200x+1000=1210\times \frac{\left(11x-10\right)\left(11x-10\right)}{121}
Multiply 11 times 11.
1210x^{2}-2200x+1000=10\left(11x-10\right)\left(11x-10\right)
Cancel out 121, the greatest common factor in 1210 and 121.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}