Evaluate
\frac{121}{21}\approx 5.761904762
Factor
\frac{11 ^ {2}}{3 \cdot 7} = 5\frac{16}{21} = 5.761904761904762
Share
Copied to clipboard
\begin{array}{l}\phantom{21)}\phantom{1}\\21\overline{)121}\\\end{array}
Use the 1^{st} digit 1 from dividend 121
\begin{array}{l}\phantom{21)}0\phantom{2}\\21\overline{)121}\\\end{array}
Since 1 is less than 21, use the next digit 2 from dividend 121 and add 0 to the quotient
\begin{array}{l}\phantom{21)}0\phantom{3}\\21\overline{)121}\\\end{array}
Use the 2^{nd} digit 2 from dividend 121
\begin{array}{l}\phantom{21)}00\phantom{4}\\21\overline{)121}\\\end{array}
Since 12 is less than 21, use the next digit 1 from dividend 121 and add 0 to the quotient
\begin{array}{l}\phantom{21)}00\phantom{5}\\21\overline{)121}\\\end{array}
Use the 3^{rd} digit 1 from dividend 121
\begin{array}{l}\phantom{21)}005\phantom{6}\\21\overline{)121}\\\phantom{21)}\underline{\phantom{}105\phantom{}}\\\phantom{21)9}16\\\end{array}
Find closest multiple of 21 to 121. We see that 5 \times 21 = 105 is the nearest. Now subtract 105 from 121 to get reminder 16. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }16
Since 16 is less than 21, stop the division. The reminder is 16. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}