Skip to main content
Solve for b_1
Tick mark Image

Similar Problems from Web Search

Share

121\left(-\frac{2}{3}\right)=b_{1}\left(\frac{1}{243}-1\right)
Multiply both sides by -\frac{2}{3}.
\frac{121\left(-2\right)}{3}=b_{1}\left(\frac{1}{243}-1\right)
Express 121\left(-\frac{2}{3}\right) as a single fraction.
\frac{-242}{3}=b_{1}\left(\frac{1}{243}-1\right)
Multiply 121 and -2 to get -242.
-\frac{242}{3}=b_{1}\left(\frac{1}{243}-1\right)
Fraction \frac{-242}{3} can be rewritten as -\frac{242}{3} by extracting the negative sign.
-\frac{242}{3}=b_{1}\left(\frac{1}{243}-\frac{243}{243}\right)
Convert 1 to fraction \frac{243}{243}.
-\frac{242}{3}=b_{1}\times \frac{1-243}{243}
Since \frac{1}{243} and \frac{243}{243} have the same denominator, subtract them by subtracting their numerators.
-\frac{242}{3}=b_{1}\left(-\frac{242}{243}\right)
Subtract 243 from 1 to get -242.
b_{1}\left(-\frac{242}{243}\right)=-\frac{242}{3}
Swap sides so that all variable terms are on the left hand side.
b_{1}=-\frac{242}{3}\left(-\frac{243}{242}\right)
Multiply both sides by -\frac{243}{242}, the reciprocal of -\frac{242}{243}.
b_{1}=\frac{-242\left(-243\right)}{3\times 242}
Multiply -\frac{242}{3} times -\frac{243}{242} by multiplying numerator times numerator and denominator times denominator.
b_{1}=\frac{58806}{726}
Do the multiplications in the fraction \frac{-242\left(-243\right)}{3\times 242}.
b_{1}=81
Divide 58806 by 726 to get 81.