121 = \frac{ { b }_{ 1 } \left( \frac{ 1 }{ 243 } -1 \right) }{ - \frac{ 2 }{ 3 } }
Solve for b_1
b_{1}=81
Share
Copied to clipboard
121\left(-\frac{2}{3}\right)=b_{1}\left(\frac{1}{243}-1\right)
Multiply both sides by -\frac{2}{3}.
\frac{121\left(-2\right)}{3}=b_{1}\left(\frac{1}{243}-1\right)
Express 121\left(-\frac{2}{3}\right) as a single fraction.
\frac{-242}{3}=b_{1}\left(\frac{1}{243}-1\right)
Multiply 121 and -2 to get -242.
-\frac{242}{3}=b_{1}\left(\frac{1}{243}-1\right)
Fraction \frac{-242}{3} can be rewritten as -\frac{242}{3} by extracting the negative sign.
-\frac{242}{3}=b_{1}\left(\frac{1}{243}-\frac{243}{243}\right)
Convert 1 to fraction \frac{243}{243}.
-\frac{242}{3}=b_{1}\times \frac{1-243}{243}
Since \frac{1}{243} and \frac{243}{243} have the same denominator, subtract them by subtracting their numerators.
-\frac{242}{3}=b_{1}\left(-\frac{242}{243}\right)
Subtract 243 from 1 to get -242.
b_{1}\left(-\frac{242}{243}\right)=-\frac{242}{3}
Swap sides so that all variable terms are on the left hand side.
b_{1}=-\frac{242}{3}\left(-\frac{243}{242}\right)
Multiply both sides by -\frac{243}{242}, the reciprocal of -\frac{242}{243}.
b_{1}=\frac{-242\left(-243\right)}{3\times 242}
Multiply -\frac{242}{3} times -\frac{243}{242} by multiplying numerator times numerator and denominator times denominator.
b_{1}=\frac{58806}{726}
Do the multiplications in the fraction \frac{-242\left(-243\right)}{3\times 242}.
b_{1}=81
Divide 58806 by 726 to get 81.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}