Evaluate
\frac{1200}{43}\approx 27.906976744
Factor
\frac{2 ^ {4} \cdot 3 \cdot 5 ^ {2}}{43} = 27\frac{39}{43} = 27.906976744186046
Share
Copied to clipboard
\begin{array}{l}\phantom{4300)}\phantom{1}\\4300\overline{)120000}\\\end{array}
Use the 1^{st} digit 1 from dividend 120000
\begin{array}{l}\phantom{4300)}0\phantom{2}\\4300\overline{)120000}\\\end{array}
Since 1 is less than 4300, use the next digit 2 from dividend 120000 and add 0 to the quotient
\begin{array}{l}\phantom{4300)}0\phantom{3}\\4300\overline{)120000}\\\end{array}
Use the 2^{nd} digit 2 from dividend 120000
\begin{array}{l}\phantom{4300)}00\phantom{4}\\4300\overline{)120000}\\\end{array}
Since 12 is less than 4300, use the next digit 0 from dividend 120000 and add 0 to the quotient
\begin{array}{l}\phantom{4300)}00\phantom{5}\\4300\overline{)120000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 120000
\begin{array}{l}\phantom{4300)}000\phantom{6}\\4300\overline{)120000}\\\end{array}
Since 120 is less than 4300, use the next digit 0 from dividend 120000 and add 0 to the quotient
\begin{array}{l}\phantom{4300)}000\phantom{7}\\4300\overline{)120000}\\\end{array}
Use the 4^{th} digit 0 from dividend 120000
\begin{array}{l}\phantom{4300)}0000\phantom{8}\\4300\overline{)120000}\\\end{array}
Since 1200 is less than 4300, use the next digit 0 from dividend 120000 and add 0 to the quotient
\begin{array}{l}\phantom{4300)}0000\phantom{9}\\4300\overline{)120000}\\\end{array}
Use the 5^{th} digit 0 from dividend 120000
\begin{array}{l}\phantom{4300)}00002\phantom{10}\\4300\overline{)120000}\\\phantom{4300)}\underline{\phantom{9}8600\phantom{9}}\\\phantom{4300)9}3400\\\end{array}
Find closest multiple of 4300 to 12000. We see that 2 \times 4300 = 8600 is the nearest. Now subtract 8600 from 12000 to get reminder 3400. Add 2 to quotient.
\begin{array}{l}\phantom{4300)}00002\phantom{11}\\4300\overline{)120000}\\\phantom{4300)}\underline{\phantom{9}8600\phantom{9}}\\\phantom{4300)9}34000\\\end{array}
Use the 6^{th} digit 0 from dividend 120000
\begin{array}{l}\phantom{4300)}000027\phantom{12}\\4300\overline{)120000}\\\phantom{4300)}\underline{\phantom{9}8600\phantom{9}}\\\phantom{4300)9}34000\\\phantom{4300)}\underline{\phantom{9}30100\phantom{}}\\\phantom{4300)99}3900\\\end{array}
Find closest multiple of 4300 to 34000. We see that 7 \times 4300 = 30100 is the nearest. Now subtract 30100 from 34000 to get reminder 3900. Add 7 to quotient.
\text{Quotient: }27 \text{Reminder: }3900
Since 3900 is less than 4300, stop the division. The reminder is 3900. The topmost line 000027 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 27.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}