Evaluate
\frac{120000}{11}\approx 10909.090909091
Factor
\frac{2 ^ {6} \cdot 3 \cdot 5 ^ {4}}{11} = 10909\frac{1}{11} = 10909.09090909091
Share
Copied to clipboard
\begin{array}{l}\phantom{11)}\phantom{1}\\11\overline{)120000}\\\end{array}
Use the 1^{st} digit 1 from dividend 120000
\begin{array}{l}\phantom{11)}0\phantom{2}\\11\overline{)120000}\\\end{array}
Since 1 is less than 11, use the next digit 2 from dividend 120000 and add 0 to the quotient
\begin{array}{l}\phantom{11)}0\phantom{3}\\11\overline{)120000}\\\end{array}
Use the 2^{nd} digit 2 from dividend 120000
\begin{array}{l}\phantom{11)}01\phantom{4}\\11\overline{)120000}\\\phantom{11)}\underline{\phantom{}11\phantom{9999}}\\\phantom{11)9}1\\\end{array}
Find closest multiple of 11 to 12. We see that 1 \times 11 = 11 is the nearest. Now subtract 11 from 12 to get reminder 1. Add 1 to quotient.
\begin{array}{l}\phantom{11)}01\phantom{5}\\11\overline{)120000}\\\phantom{11)}\underline{\phantom{}11\phantom{9999}}\\\phantom{11)9}10\\\end{array}
Use the 3^{rd} digit 0 from dividend 120000
\begin{array}{l}\phantom{11)}010\phantom{6}\\11\overline{)120000}\\\phantom{11)}\underline{\phantom{}11\phantom{9999}}\\\phantom{11)9}10\\\end{array}
Since 10 is less than 11, use the next digit 0 from dividend 120000 and add 0 to the quotient
\begin{array}{l}\phantom{11)}010\phantom{7}\\11\overline{)120000}\\\phantom{11)}\underline{\phantom{}11\phantom{9999}}\\\phantom{11)9}100\\\end{array}
Use the 4^{th} digit 0 from dividend 120000
\begin{array}{l}\phantom{11)}0109\phantom{8}\\11\overline{)120000}\\\phantom{11)}\underline{\phantom{}11\phantom{9999}}\\\phantom{11)9}100\\\phantom{11)}\underline{\phantom{99}99\phantom{99}}\\\phantom{11)999}1\\\end{array}
Find closest multiple of 11 to 100. We see that 9 \times 11 = 99 is the nearest. Now subtract 99 from 100 to get reminder 1. Add 9 to quotient.
\begin{array}{l}\phantom{11)}0109\phantom{9}\\11\overline{)120000}\\\phantom{11)}\underline{\phantom{}11\phantom{9999}}\\\phantom{11)9}100\\\phantom{11)}\underline{\phantom{99}99\phantom{99}}\\\phantom{11)999}10\\\end{array}
Use the 5^{th} digit 0 from dividend 120000
\begin{array}{l}\phantom{11)}01090\phantom{10}\\11\overline{)120000}\\\phantom{11)}\underline{\phantom{}11\phantom{9999}}\\\phantom{11)9}100\\\phantom{11)}\underline{\phantom{99}99\phantom{99}}\\\phantom{11)999}10\\\end{array}
Since 10 is less than 11, use the next digit 0 from dividend 120000 and add 0 to the quotient
\begin{array}{l}\phantom{11)}01090\phantom{11}\\11\overline{)120000}\\\phantom{11)}\underline{\phantom{}11\phantom{9999}}\\\phantom{11)9}100\\\phantom{11)}\underline{\phantom{99}99\phantom{99}}\\\phantom{11)999}100\\\end{array}
Use the 6^{th} digit 0 from dividend 120000
\begin{array}{l}\phantom{11)}010909\phantom{12}\\11\overline{)120000}\\\phantom{11)}\underline{\phantom{}11\phantom{9999}}\\\phantom{11)9}100\\\phantom{11)}\underline{\phantom{99}99\phantom{99}}\\\phantom{11)999}100\\\phantom{11)}\underline{\phantom{9999}99\phantom{}}\\\phantom{11)99999}1\\\end{array}
Find closest multiple of 11 to 100. We see that 9 \times 11 = 99 is the nearest. Now subtract 99 from 100 to get reminder 1. Add 9 to quotient.
\text{Quotient: }10909 \text{Reminder: }1
Since 1 is less than 11, stop the division. The reminder is 1. The topmost line 010909 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 10909.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}