Solve for x
x = \frac{250000 \sqrt{870}}{203} \approx 36324.830551115
x = -\frac{250000 \sqrt{870}}{203} \approx -36324.830551115
Graph
Share
Copied to clipboard
120000=90.944\times \left(\frac{x}{1000}\right)^{2}
Multiply 1.12 and 81.2 to get 90.944.
120000=90.944\times \frac{x^{2}}{1000^{2}}
To raise \frac{x}{1000} to a power, raise both numerator and denominator to the power and then divide.
120000=90.944\times \frac{x^{2}}{1000000}
Calculate 1000 to the power of 2 and get 1000000.
90.944\times \frac{x^{2}}{1000000}=120000
Swap sides so that all variable terms are on the left hand side.
\frac{x^{2}}{1000000}=\frac{120000}{90.944}
Divide both sides by 90.944.
\frac{x^{2}}{1000000}=\frac{120000000}{90944}
Expand \frac{120000}{90.944} by multiplying both numerator and the denominator by 1000.
\frac{x^{2}}{1000000}=\frac{1875000}{1421}
Reduce the fraction \frac{120000000}{90944} to lowest terms by extracting and canceling out 64.
x^{2}=\frac{1875000}{1421}\times 1000000
Multiply both sides by 1000000.
x^{2}=\frac{1875000000000}{1421}
Multiply \frac{1875000}{1421} and 1000000 to get \frac{1875000000000}{1421}.
x=\frac{250000\sqrt{870}}{203} x=-\frac{250000\sqrt{870}}{203}
Take the square root of both sides of the equation.
120000=90.944\times \left(\frac{x}{1000}\right)^{2}
Multiply 1.12 and 81.2 to get 90.944.
120000=90.944\times \frac{x^{2}}{1000^{2}}
To raise \frac{x}{1000} to a power, raise both numerator and denominator to the power and then divide.
120000=90.944\times \frac{x^{2}}{1000000}
Calculate 1000 to the power of 2 and get 1000000.
90.944\times \frac{x^{2}}{1000000}=120000
Swap sides so that all variable terms are on the left hand side.
90.944\times \frac{x^{2}}{1000000}-120000=0
Subtract 120000 from both sides.
90.944x^{2}-120000000000=0
Multiply both sides of the equation by 1000000.
x=\frac{0±\sqrt{0^{2}-4\times 90.944\left(-120000000000\right)}}{2\times 90.944}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 90.944 for a, 0 for b, and -120000000000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 90.944\left(-120000000000\right)}}{2\times 90.944}
Square 0.
x=\frac{0±\sqrt{-363.776\left(-120000000000\right)}}{2\times 90.944}
Multiply -4 times 90.944.
x=\frac{0±\sqrt{43653120000000}}{2\times 90.944}
Multiply -363.776 times -120000000000.
x=\frac{0±224000\sqrt{870}}{2\times 90.944}
Take the square root of 43653120000000.
x=\frac{0±224000\sqrt{870}}{181.888}
Multiply 2 times 90.944.
x=\frac{250000\sqrt{870}}{203}
Now solve the equation x=\frac{0±224000\sqrt{870}}{181.888} when ± is plus.
x=-\frac{250000\sqrt{870}}{203}
Now solve the equation x=\frac{0±224000\sqrt{870}}{181.888} when ± is minus.
x=\frac{250000\sqrt{870}}{203} x=-\frac{250000\sqrt{870}}{203}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}