Solve for x
x=10
x=190
Graph
Share
Copied to clipboard
\frac{12000\left(-0.01x+1\right)^{2}}{12000}=\frac{9720}{12000}
Divide both sides by 12000.
\left(-0.01x+1\right)^{2}=\frac{9720}{12000}
Dividing by 12000 undoes the multiplication by 12000.
\left(-0.01x+1\right)^{2}=\frac{81}{100}
Reduce the fraction \frac{9720}{12000} to lowest terms by extracting and canceling out 120.
-0.01x+1=\frac{9}{10} -0.01x+1=-\frac{9}{10}
Take the square root of both sides of the equation.
-0.01x+1-1=\frac{9}{10}-1 -0.01x+1-1=-\frac{9}{10}-1
Subtract 1 from both sides of the equation.
-0.01x=\frac{9}{10}-1 -0.01x=-\frac{9}{10}-1
Subtracting 1 from itself leaves 0.
-0.01x=-\frac{1}{10}
Subtract 1 from \frac{9}{10}.
-0.01x=-\frac{19}{10}
Subtract 1 from -\frac{9}{10}.
\frac{-0.01x}{-0.01}=-\frac{\frac{1}{10}}{-0.01} \frac{-0.01x}{-0.01}=-\frac{\frac{19}{10}}{-0.01}
Multiply both sides by -100.
x=-\frac{\frac{1}{10}}{-0.01} x=-\frac{\frac{19}{10}}{-0.01}
Dividing by -0.01 undoes the multiplication by -0.01.
x=10
Divide -\frac{1}{10} by -0.01 by multiplying -\frac{1}{10} by the reciprocal of -0.01.
x=190
Divide -\frac{19}{10} by -0.01 by multiplying -\frac{19}{10} by the reciprocal of -0.01.
x=10 x=190
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}