Skip to main content
Solve for s
Tick mark Image

Similar Problems from Web Search

Share

s^{2}+20s=12000
Swap sides so that all variable terms are on the left hand side.
s^{2}+20s-12000=0
Subtract 12000 from both sides.
a+b=20 ab=-12000
To solve the equation, factor s^{2}+20s-12000 using formula s^{2}+\left(a+b\right)s+ab=\left(s+a\right)\left(s+b\right). To find a and b, set up a system to be solved.
-1,12000 -2,6000 -3,4000 -4,3000 -5,2400 -6,2000 -8,1500 -10,1200 -12,1000 -15,800 -16,750 -20,600 -24,500 -25,480 -30,400 -32,375 -40,300 -48,250 -50,240 -60,200 -75,160 -80,150 -96,125 -100,120
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -12000.
-1+12000=11999 -2+6000=5998 -3+4000=3997 -4+3000=2996 -5+2400=2395 -6+2000=1994 -8+1500=1492 -10+1200=1190 -12+1000=988 -15+800=785 -16+750=734 -20+600=580 -24+500=476 -25+480=455 -30+400=370 -32+375=343 -40+300=260 -48+250=202 -50+240=190 -60+200=140 -75+160=85 -80+150=70 -96+125=29 -100+120=20
Calculate the sum for each pair.
a=-100 b=120
The solution is the pair that gives sum 20.
\left(s-100\right)\left(s+120\right)
Rewrite factored expression \left(s+a\right)\left(s+b\right) using the obtained values.
s=100 s=-120
To find equation solutions, solve s-100=0 and s+120=0.
s^{2}+20s=12000
Swap sides so that all variable terms are on the left hand side.
s^{2}+20s-12000=0
Subtract 12000 from both sides.
a+b=20 ab=1\left(-12000\right)=-12000
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as s^{2}+as+bs-12000. To find a and b, set up a system to be solved.
-1,12000 -2,6000 -3,4000 -4,3000 -5,2400 -6,2000 -8,1500 -10,1200 -12,1000 -15,800 -16,750 -20,600 -24,500 -25,480 -30,400 -32,375 -40,300 -48,250 -50,240 -60,200 -75,160 -80,150 -96,125 -100,120
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -12000.
-1+12000=11999 -2+6000=5998 -3+4000=3997 -4+3000=2996 -5+2400=2395 -6+2000=1994 -8+1500=1492 -10+1200=1190 -12+1000=988 -15+800=785 -16+750=734 -20+600=580 -24+500=476 -25+480=455 -30+400=370 -32+375=343 -40+300=260 -48+250=202 -50+240=190 -60+200=140 -75+160=85 -80+150=70 -96+125=29 -100+120=20
Calculate the sum for each pair.
a=-100 b=120
The solution is the pair that gives sum 20.
\left(s^{2}-100s\right)+\left(120s-12000\right)
Rewrite s^{2}+20s-12000 as \left(s^{2}-100s\right)+\left(120s-12000\right).
s\left(s-100\right)+120\left(s-100\right)
Factor out s in the first and 120 in the second group.
\left(s-100\right)\left(s+120\right)
Factor out common term s-100 by using distributive property.
s=100 s=-120
To find equation solutions, solve s-100=0 and s+120=0.
s^{2}+20s=12000
Swap sides so that all variable terms are on the left hand side.
s^{2}+20s-12000=0
Subtract 12000 from both sides.
s=\frac{-20±\sqrt{20^{2}-4\left(-12000\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 20 for b, and -12000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
s=\frac{-20±\sqrt{400-4\left(-12000\right)}}{2}
Square 20.
s=\frac{-20±\sqrt{400+48000}}{2}
Multiply -4 times -12000.
s=\frac{-20±\sqrt{48400}}{2}
Add 400 to 48000.
s=\frac{-20±220}{2}
Take the square root of 48400.
s=\frac{200}{2}
Now solve the equation s=\frac{-20±220}{2} when ± is plus. Add -20 to 220.
s=100
Divide 200 by 2.
s=-\frac{240}{2}
Now solve the equation s=\frac{-20±220}{2} when ± is minus. Subtract 220 from -20.
s=-120
Divide -240 by 2.
s=100 s=-120
The equation is now solved.
s^{2}+20s=12000
Swap sides so that all variable terms are on the left hand side.
s^{2}+20s+10^{2}=12000+10^{2}
Divide 20, the coefficient of the x term, by 2 to get 10. Then add the square of 10 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
s^{2}+20s+100=12000+100
Square 10.
s^{2}+20s+100=12100
Add 12000 to 100.
\left(s+10\right)^{2}=12100
Factor s^{2}+20s+100. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(s+10\right)^{2}}=\sqrt{12100}
Take the square root of both sides of the equation.
s+10=110 s+10=-110
Simplify.
s=100 s=-120
Subtract 10 from both sides of the equation.