Evaluate
\frac{10}{7}\approx 1.428571429
Factor
\frac{2 \cdot 5}{7} = 1\frac{3}{7} = 1.4285714285714286
Share
Copied to clipboard
\begin{array}{l}\phantom{840)}\phantom{1}\\840\overline{)1200}\\\end{array}
Use the 1^{st} digit 1 from dividend 1200
\begin{array}{l}\phantom{840)}0\phantom{2}\\840\overline{)1200}\\\end{array}
Since 1 is less than 840, use the next digit 2 from dividend 1200 and add 0 to the quotient
\begin{array}{l}\phantom{840)}0\phantom{3}\\840\overline{)1200}\\\end{array}
Use the 2^{nd} digit 2 from dividend 1200
\begin{array}{l}\phantom{840)}00\phantom{4}\\840\overline{)1200}\\\end{array}
Since 12 is less than 840, use the next digit 0 from dividend 1200 and add 0 to the quotient
\begin{array}{l}\phantom{840)}00\phantom{5}\\840\overline{)1200}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1200
\begin{array}{l}\phantom{840)}000\phantom{6}\\840\overline{)1200}\\\end{array}
Since 120 is less than 840, use the next digit 0 from dividend 1200 and add 0 to the quotient
\begin{array}{l}\phantom{840)}000\phantom{7}\\840\overline{)1200}\\\end{array}
Use the 4^{th} digit 0 from dividend 1200
\begin{array}{l}\phantom{840)}0001\phantom{8}\\840\overline{)1200}\\\phantom{840)}\underline{\phantom{9}840\phantom{}}\\\phantom{840)9}360\\\end{array}
Find closest multiple of 840 to 1200. We see that 1 \times 840 = 840 is the nearest. Now subtract 840 from 1200 to get reminder 360. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }360
Since 360 is less than 840, stop the division. The reminder is 360. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}