Solve for s
s=-\frac{150}{20-t_{2}}
t_{2}\neq 20
Solve for t_2
t_{2}=20+\frac{150}{s}
s\neq 0
Share
Copied to clipboard
1200=8st_{2}-20s\times 8
Use the distributive property to multiply s\times 8 by t_{2}-20.
1200=8st_{2}-160s
Multiply -20 and 8 to get -160.
8st_{2}-160s=1200
Swap sides so that all variable terms are on the left hand side.
\left(8t_{2}-160\right)s=1200
Combine all terms containing s.
\frac{\left(8t_{2}-160\right)s}{8t_{2}-160}=\frac{1200}{8t_{2}-160}
Divide both sides by 8t_{2}-160.
s=\frac{1200}{8t_{2}-160}
Dividing by 8t_{2}-160 undoes the multiplication by 8t_{2}-160.
s=\frac{150}{t_{2}-20}
Divide 1200 by 8t_{2}-160.
1200=8st_{2}-20s\times 8
Use the distributive property to multiply s\times 8 by t_{2}-20.
1200=8st_{2}-160s
Multiply -20 and 8 to get -160.
8st_{2}-160s=1200
Swap sides so that all variable terms are on the left hand side.
8st_{2}=1200+160s
Add 160s to both sides.
8st_{2}=160s+1200
The equation is in standard form.
\frac{8st_{2}}{8s}=\frac{160s+1200}{8s}
Divide both sides by 8s.
t_{2}=\frac{160s+1200}{8s}
Dividing by 8s undoes the multiplication by 8s.
t_{2}=20+\frac{150}{s}
Divide 1200+160s by 8s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}