Solve for x
x=-\frac{5x_{16}}{2}+\frac{7291}{48}
Solve for x_16
x_{16}=-\frac{2x}{5}+\frac{7291}{120}
Graph
Share
Copied to clipboard
120x_{16}+48x-5760=1531
Use the distributive property to multiply x-120 by 48.
48x-5760=1531-120x_{16}
Subtract 120x_{16} from both sides.
48x=1531-120x_{16}+5760
Add 5760 to both sides.
48x=7291-120x_{16}
Add 1531 and 5760 to get 7291.
\frac{48x}{48}=\frac{7291-120x_{16}}{48}
Divide both sides by 48.
x=\frac{7291-120x_{16}}{48}
Dividing by 48 undoes the multiplication by 48.
x=-\frac{5x_{16}}{2}+\frac{7291}{48}
Divide 7291-120x_{16} by 48.
120x_{16}+48x-5760=1531
Use the distributive property to multiply x-120 by 48.
120x_{16}-5760=1531-48x
Subtract 48x from both sides.
120x_{16}=1531-48x+5760
Add 5760 to both sides.
120x_{16}=7291-48x
Add 1531 and 5760 to get 7291.
\frac{120x_{16}}{120}=\frac{7291-48x}{120}
Divide both sides by 120.
x_{16}=\frac{7291-48x}{120}
Dividing by 120 undoes the multiplication by 120.
x_{16}=-\frac{2x}{5}+\frac{7291}{120}
Divide 7291-48x by 120.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}