Solve for x
x=\frac{10535}{24}-15x_{1}
Solve for x_1
x_{1}=-\frac{x}{15}+\frac{2107}{72}
Graph
Share
Copied to clipboard
72x_{1}+\left(x-120\right)\times 4.8=1531
Multiply 120 and 0.6 to get 72.
72x_{1}+4.8x-576=1531
Use the distributive property to multiply x-120 by 4.8.
4.8x-576=1531-72x_{1}
Subtract 72x_{1} from both sides.
4.8x=1531-72x_{1}+576
Add 576 to both sides.
4.8x=2107-72x_{1}
Add 1531 and 576 to get 2107.
\frac{4.8x}{4.8}=\frac{2107-72x_{1}}{4.8}
Divide both sides of the equation by 4.8, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{2107-72x_{1}}{4.8}
Dividing by 4.8 undoes the multiplication by 4.8.
x=\frac{10535}{24}-15x_{1}
Divide 2107-72x_{1} by 4.8 by multiplying 2107-72x_{1} by the reciprocal of 4.8.
72x_{1}+\left(x-120\right)\times 4.8=1531
Multiply 120 and 0.6 to get 72.
72x_{1}+4.8x-576=1531
Use the distributive property to multiply x-120 by 4.8.
72x_{1}-576=1531-4.8x
Subtract 4.8x from both sides.
72x_{1}=1531-4.8x+576
Add 576 to both sides.
72x_{1}=2107-4.8x
Add 1531 and 576 to get 2107.
72x_{1}=-\frac{24x}{5}+2107
The equation is in standard form.
\frac{72x_{1}}{72}=\frac{-\frac{24x}{5}+2107}{72}
Divide both sides by 72.
x_{1}=\frac{-\frac{24x}{5}+2107}{72}
Dividing by 72 undoes the multiplication by 72.
x_{1}=-\frac{x}{15}+\frac{2107}{72}
Divide 2107-\frac{24x}{5} by 72.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}