Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}+200x-2300=0
Divide both sides by 40.
a+b=200 ab=3\left(-2300\right)=-6900
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx-2300. To find a and b, set up a system to be solved.
-1,6900 -2,3450 -3,2300 -4,1725 -5,1380 -6,1150 -10,690 -12,575 -15,460 -20,345 -23,300 -25,276 -30,230 -46,150 -50,138 -60,115 -69,100 -75,92
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -6900.
-1+6900=6899 -2+3450=3448 -3+2300=2297 -4+1725=1721 -5+1380=1375 -6+1150=1144 -10+690=680 -12+575=563 -15+460=445 -20+345=325 -23+300=277 -25+276=251 -30+230=200 -46+150=104 -50+138=88 -60+115=55 -69+100=31 -75+92=17
Calculate the sum for each pair.
a=-30 b=230
The solution is the pair that gives sum 200.
\left(3x^{2}-30x\right)+\left(230x-2300\right)
Rewrite 3x^{2}+200x-2300 as \left(3x^{2}-30x\right)+\left(230x-2300\right).
3x\left(x-10\right)+230\left(x-10\right)
Factor out 3x in the first and 230 in the second group.
\left(x-10\right)\left(3x+230\right)
Factor out common term x-10 by using distributive property.
x=10 x=-\frac{230}{3}
To find equation solutions, solve x-10=0 and 3x+230=0.
120x^{2}+8000x-92000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8000±\sqrt{8000^{2}-4\times 120\left(-92000\right)}}{2\times 120}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 120 for a, 8000 for b, and -92000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8000±\sqrt{64000000-4\times 120\left(-92000\right)}}{2\times 120}
Square 8000.
x=\frac{-8000±\sqrt{64000000-480\left(-92000\right)}}{2\times 120}
Multiply -4 times 120.
x=\frac{-8000±\sqrt{64000000+44160000}}{2\times 120}
Multiply -480 times -92000.
x=\frac{-8000±\sqrt{108160000}}{2\times 120}
Add 64000000 to 44160000.
x=\frac{-8000±10400}{2\times 120}
Take the square root of 108160000.
x=\frac{-8000±10400}{240}
Multiply 2 times 120.
x=\frac{2400}{240}
Now solve the equation x=\frac{-8000±10400}{240} when ± is plus. Add -8000 to 10400.
x=10
Divide 2400 by 240.
x=-\frac{18400}{240}
Now solve the equation x=\frac{-8000±10400}{240} when ± is minus. Subtract 10400 from -8000.
x=-\frac{230}{3}
Reduce the fraction \frac{-18400}{240} to lowest terms by extracting and canceling out 80.
x=10 x=-\frac{230}{3}
The equation is now solved.
120x^{2}+8000x-92000=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
120x^{2}+8000x-92000-\left(-92000\right)=-\left(-92000\right)
Add 92000 to both sides of the equation.
120x^{2}+8000x=-\left(-92000\right)
Subtracting -92000 from itself leaves 0.
120x^{2}+8000x=92000
Subtract -92000 from 0.
\frac{120x^{2}+8000x}{120}=\frac{92000}{120}
Divide both sides by 120.
x^{2}+\frac{8000}{120}x=\frac{92000}{120}
Dividing by 120 undoes the multiplication by 120.
x^{2}+\frac{200}{3}x=\frac{92000}{120}
Reduce the fraction \frac{8000}{120} to lowest terms by extracting and canceling out 40.
x^{2}+\frac{200}{3}x=\frac{2300}{3}
Reduce the fraction \frac{92000}{120} to lowest terms by extracting and canceling out 40.
x^{2}+\frac{200}{3}x+\left(\frac{100}{3}\right)^{2}=\frac{2300}{3}+\left(\frac{100}{3}\right)^{2}
Divide \frac{200}{3}, the coefficient of the x term, by 2 to get \frac{100}{3}. Then add the square of \frac{100}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{200}{3}x+\frac{10000}{9}=\frac{2300}{3}+\frac{10000}{9}
Square \frac{100}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{200}{3}x+\frac{10000}{9}=\frac{16900}{9}
Add \frac{2300}{3} to \frac{10000}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{100}{3}\right)^{2}=\frac{16900}{9}
Factor x^{2}+\frac{200}{3}x+\frac{10000}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{100}{3}\right)^{2}}=\sqrt{\frac{16900}{9}}
Take the square root of both sides of the equation.
x+\frac{100}{3}=\frac{130}{3} x+\frac{100}{3}=-\frac{130}{3}
Simplify.
x=10 x=-\frac{230}{3}
Subtract \frac{100}{3} from both sides of the equation.