Evaluate
\frac{60}{7}\approx 8.571428571
Factor
\frac{2 ^ {2} \cdot 3 \cdot 5}{7} = 8\frac{4}{7} = 8.571428571428571
Share
Copied to clipboard
\begin{array}{l}\phantom{14)}\phantom{1}\\14\overline{)120}\\\end{array}
Use the 1^{st} digit 1 from dividend 120
\begin{array}{l}\phantom{14)}0\phantom{2}\\14\overline{)120}\\\end{array}
Since 1 is less than 14, use the next digit 2 from dividend 120 and add 0 to the quotient
\begin{array}{l}\phantom{14)}0\phantom{3}\\14\overline{)120}\\\end{array}
Use the 2^{nd} digit 2 from dividend 120
\begin{array}{l}\phantom{14)}00\phantom{4}\\14\overline{)120}\\\end{array}
Since 12 is less than 14, use the next digit 0 from dividend 120 and add 0 to the quotient
\begin{array}{l}\phantom{14)}00\phantom{5}\\14\overline{)120}\\\end{array}
Use the 3^{rd} digit 0 from dividend 120
\begin{array}{l}\phantom{14)}008\phantom{6}\\14\overline{)120}\\\phantom{14)}\underline{\phantom{}112\phantom{}}\\\phantom{14)99}8\\\end{array}
Find closest multiple of 14 to 120. We see that 8 \times 14 = 112 is the nearest. Now subtract 112 from 120 to get reminder 8. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }8
Since 8 is less than 14, stop the division. The reminder is 8. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}