Solve for p
p=-\sqrt{70}i\approx -0-8.366600265i
p=\sqrt{70}i\approx 8.366600265i
Share
Copied to clipboard
4p^{2}+400=120
Swap sides so that all variable terms are on the left hand side.
4p^{2}=120-400
Subtract 400 from both sides.
4p^{2}=-280
Subtract 400 from 120 to get -280.
p^{2}=\frac{-280}{4}
Divide both sides by 4.
p^{2}=-70
Divide -280 by 4 to get -70.
p=\sqrt{70}i p=-\sqrt{70}i
The equation is now solved.
4p^{2}+400=120
Swap sides so that all variable terms are on the left hand side.
4p^{2}+400-120=0
Subtract 120 from both sides.
4p^{2}+280=0
Subtract 120 from 400 to get 280.
p=\frac{0±\sqrt{0^{2}-4\times 4\times 280}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 0 for b, and 280 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{0±\sqrt{-4\times 4\times 280}}{2\times 4}
Square 0.
p=\frac{0±\sqrt{-16\times 280}}{2\times 4}
Multiply -4 times 4.
p=\frac{0±\sqrt{-4480}}{2\times 4}
Multiply -16 times 280.
p=\frac{0±8\sqrt{70}i}{2\times 4}
Take the square root of -4480.
p=\frac{0±8\sqrt{70}i}{8}
Multiply 2 times 4.
p=\sqrt{70}i
Now solve the equation p=\frac{0±8\sqrt{70}i}{8} when ± is plus.
p=-\sqrt{70}i
Now solve the equation p=\frac{0±8\sqrt{70}i}{8} when ± is minus.
p=\sqrt{70}i p=-\sqrt{70}i
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}