Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

120=\frac{3}{1000000}x\left(24000-x\right)
Calculate 10 to the power of 6 and get 1000000.
120=\frac{3}{1000000}x\times 24000+\frac{3}{1000000}x\left(-1\right)x
Use the distributive property to multiply \frac{3}{1000000}x by 24000-x.
120=\frac{3}{1000000}x\times 24000+\frac{3}{1000000}x^{2}\left(-1\right)
Multiply x and x to get x^{2}.
120=\frac{3\times 24000}{1000000}x+\frac{3}{1000000}x^{2}\left(-1\right)
Express \frac{3}{1000000}\times 24000 as a single fraction.
120=\frac{72000}{1000000}x+\frac{3}{1000000}x^{2}\left(-1\right)
Multiply 3 and 24000 to get 72000.
120=\frac{9}{125}x+\frac{3}{1000000}x^{2}\left(-1\right)
Reduce the fraction \frac{72000}{1000000} to lowest terms by extracting and canceling out 8000.
120=\frac{9}{125}x-\frac{3}{1000000}x^{2}
Multiply \frac{3}{1000000} and -1 to get -\frac{3}{1000000}.
\frac{9}{125}x-\frac{3}{1000000}x^{2}=120
Swap sides so that all variable terms are on the left hand side.
\frac{9}{125}x-\frac{3}{1000000}x^{2}-120=0
Subtract 120 from both sides.
-\frac{3}{1000000}x^{2}+\frac{9}{125}x-120=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{9}{125}±\sqrt{\left(\frac{9}{125}\right)^{2}-4\left(-\frac{3}{1000000}\right)\left(-120\right)}}{2\left(-\frac{3}{1000000}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{3}{1000000} for a, \frac{9}{125} for b, and -120 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{9}{125}±\sqrt{\frac{81}{15625}-4\left(-\frac{3}{1000000}\right)\left(-120\right)}}{2\left(-\frac{3}{1000000}\right)}
Square \frac{9}{125} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{9}{125}±\sqrt{\frac{81}{15625}+\frac{3}{250000}\left(-120\right)}}{2\left(-\frac{3}{1000000}\right)}
Multiply -4 times -\frac{3}{1000000}.
x=\frac{-\frac{9}{125}±\sqrt{\frac{81}{15625}-\frac{9}{6250}}}{2\left(-\frac{3}{1000000}\right)}
Multiply \frac{3}{250000} times -120.
x=\frac{-\frac{9}{125}±\sqrt{\frac{117}{31250}}}{2\left(-\frac{3}{1000000}\right)}
Add \frac{81}{15625} to -\frac{9}{6250} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{9}{125}±\frac{3\sqrt{26}}{250}}{2\left(-\frac{3}{1000000}\right)}
Take the square root of \frac{117}{31250}.
x=\frac{-\frac{9}{125}±\frac{3\sqrt{26}}{250}}{-\frac{3}{500000}}
Multiply 2 times -\frac{3}{1000000}.
x=\frac{\frac{3\sqrt{26}}{250}-\frac{9}{125}}{-\frac{3}{500000}}
Now solve the equation x=\frac{-\frac{9}{125}±\frac{3\sqrt{26}}{250}}{-\frac{3}{500000}} when ± is plus. Add -\frac{9}{125} to \frac{3\sqrt{26}}{250}.
x=12000-2000\sqrt{26}
Divide -\frac{9}{125}+\frac{3\sqrt{26}}{250} by -\frac{3}{500000} by multiplying -\frac{9}{125}+\frac{3\sqrt{26}}{250} by the reciprocal of -\frac{3}{500000}.
x=\frac{-\frac{3\sqrt{26}}{250}-\frac{9}{125}}{-\frac{3}{500000}}
Now solve the equation x=\frac{-\frac{9}{125}±\frac{3\sqrt{26}}{250}}{-\frac{3}{500000}} when ± is minus. Subtract \frac{3\sqrt{26}}{250} from -\frac{9}{125}.
x=2000\sqrt{26}+12000
Divide -\frac{9}{125}-\frac{3\sqrt{26}}{250} by -\frac{3}{500000} by multiplying -\frac{9}{125}-\frac{3\sqrt{26}}{250} by the reciprocal of -\frac{3}{500000}.
x=12000-2000\sqrt{26} x=2000\sqrt{26}+12000
The equation is now solved.
120=\frac{3}{1000000}x\left(24000-x\right)
Calculate 10 to the power of 6 and get 1000000.
120=\frac{3}{1000000}x\times 24000+\frac{3}{1000000}x\left(-1\right)x
Use the distributive property to multiply \frac{3}{1000000}x by 24000-x.
120=\frac{3}{1000000}x\times 24000+\frac{3}{1000000}x^{2}\left(-1\right)
Multiply x and x to get x^{2}.
120=\frac{3\times 24000}{1000000}x+\frac{3}{1000000}x^{2}\left(-1\right)
Express \frac{3}{1000000}\times 24000 as a single fraction.
120=\frac{72000}{1000000}x+\frac{3}{1000000}x^{2}\left(-1\right)
Multiply 3 and 24000 to get 72000.
120=\frac{9}{125}x+\frac{3}{1000000}x^{2}\left(-1\right)
Reduce the fraction \frac{72000}{1000000} to lowest terms by extracting and canceling out 8000.
120=\frac{9}{125}x-\frac{3}{1000000}x^{2}
Multiply \frac{3}{1000000} and -1 to get -\frac{3}{1000000}.
\frac{9}{125}x-\frac{3}{1000000}x^{2}=120
Swap sides so that all variable terms are on the left hand side.
-\frac{3}{1000000}x^{2}+\frac{9}{125}x=120
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{3}{1000000}x^{2}+\frac{9}{125}x}{-\frac{3}{1000000}}=\frac{120}{-\frac{3}{1000000}}
Divide both sides of the equation by -\frac{3}{1000000}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{\frac{9}{125}}{-\frac{3}{1000000}}x=\frac{120}{-\frac{3}{1000000}}
Dividing by -\frac{3}{1000000} undoes the multiplication by -\frac{3}{1000000}.
x^{2}-24000x=\frac{120}{-\frac{3}{1000000}}
Divide \frac{9}{125} by -\frac{3}{1000000} by multiplying \frac{9}{125} by the reciprocal of -\frac{3}{1000000}.
x^{2}-24000x=-40000000
Divide 120 by -\frac{3}{1000000} by multiplying 120 by the reciprocal of -\frac{3}{1000000}.
x^{2}-24000x+\left(-12000\right)^{2}=-40000000+\left(-12000\right)^{2}
Divide -24000, the coefficient of the x term, by 2 to get -12000. Then add the square of -12000 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-24000x+144000000=-40000000+144000000
Square -12000.
x^{2}-24000x+144000000=104000000
Add -40000000 to 144000000.
\left(x-12000\right)^{2}=104000000
Factor x^{2}-24000x+144000000. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-12000\right)^{2}}=\sqrt{104000000}
Take the square root of both sides of the equation.
x-12000=2000\sqrt{26} x-12000=-2000\sqrt{26}
Simplify.
x=2000\sqrt{26}+12000 x=12000-2000\sqrt{26}
Add 12000 to both sides of the equation.