Solve for y
y = -\frac{595}{103} = -5\frac{80}{103} \approx -5.776699029
Graph
Share
Copied to clipboard
12.3y+61.5-\left(4y-8\right)=-2y+10
Use the distributive property to multiply 12.3 by y+5.
12.3y+61.5-4y-\left(-8\right)=-2y+10
To find the opposite of 4y-8, find the opposite of each term.
12.3y+61.5-4y+8=-2y+10
The opposite of -8 is 8.
8.3y+61.5+8=-2y+10
Combine 12.3y and -4y to get 8.3y.
8.3y+69.5=-2y+10
Add 61.5 and 8 to get 69.5.
8.3y+69.5+2y=10
Add 2y to both sides.
10.3y+69.5=10
Combine 8.3y and 2y to get 10.3y.
10.3y=10-69.5
Subtract 69.5 from both sides.
10.3y=-59.5
Subtract 69.5 from 10 to get -59.5.
y=\frac{-59.5}{10.3}
Divide both sides by 10.3.
y=\frac{-595}{103}
Expand \frac{-59.5}{10.3} by multiplying both numerator and the denominator by 10.
y=-\frac{595}{103}
Fraction \frac{-595}{103} can be rewritten as -\frac{595}{103} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}