Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

12.1\times \frac{9}{4}+15.4\left(-\frac{3^{2}}{4}\right)-6.5\left(-\frac{9}{4}\right)
Calculate -\frac{3}{2} to the power of 2 and get \frac{9}{4}.
\frac{121}{10}\times \frac{9}{4}+15.4\left(-\frac{3^{2}}{4}\right)-6.5\left(-\frac{9}{4}\right)
Convert decimal number 12.1 to fraction \frac{121}{10}.
\frac{121\times 9}{10\times 4}+15.4\left(-\frac{3^{2}}{4}\right)-6.5\left(-\frac{9}{4}\right)
Multiply \frac{121}{10} times \frac{9}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{1089}{40}+15.4\left(-\frac{3^{2}}{4}\right)-6.5\left(-\frac{9}{4}\right)
Do the multiplications in the fraction \frac{121\times 9}{10\times 4}.
\frac{1089}{40}+15.4\left(-\frac{9}{4}\right)-6.5\left(-\frac{9}{4}\right)
Calculate 3 to the power of 2 and get 9.
\frac{1089}{40}+\frac{77}{5}\left(-\frac{9}{4}\right)-6.5\left(-\frac{9}{4}\right)
Convert decimal number 15.4 to fraction \frac{154}{10}. Reduce the fraction \frac{154}{10} to lowest terms by extracting and canceling out 2.
\frac{1089}{40}+\frac{77\left(-9\right)}{5\times 4}-6.5\left(-\frac{9}{4}\right)
Multiply \frac{77}{5} times -\frac{9}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{1089}{40}+\frac{-693}{20}-6.5\left(-\frac{9}{4}\right)
Do the multiplications in the fraction \frac{77\left(-9\right)}{5\times 4}.
\frac{1089}{40}-\frac{693}{20}-6.5\left(-\frac{9}{4}\right)
Fraction \frac{-693}{20} can be rewritten as -\frac{693}{20} by extracting the negative sign.
\frac{1089}{40}-\frac{1386}{40}-6.5\left(-\frac{9}{4}\right)
Least common multiple of 40 and 20 is 40. Convert \frac{1089}{40} and \frac{693}{20} to fractions with denominator 40.
\frac{1089-1386}{40}-6.5\left(-\frac{9}{4}\right)
Since \frac{1089}{40} and \frac{1386}{40} have the same denominator, subtract them by subtracting their numerators.
-\frac{297}{40}-6.5\left(-\frac{9}{4}\right)
Subtract 1386 from 1089 to get -297.
-\frac{297}{40}-\frac{13}{2}\left(-\frac{9}{4}\right)
Convert decimal number 6.5 to fraction \frac{65}{10}. Reduce the fraction \frac{65}{10} to lowest terms by extracting and canceling out 5.
-\frac{297}{40}-\frac{13\left(-9\right)}{2\times 4}
Multiply \frac{13}{2} times -\frac{9}{4} by multiplying numerator times numerator and denominator times denominator.
-\frac{297}{40}-\frac{-117}{8}
Do the multiplications in the fraction \frac{13\left(-9\right)}{2\times 4}.
-\frac{297}{40}-\left(-\frac{117}{8}\right)
Fraction \frac{-117}{8} can be rewritten as -\frac{117}{8} by extracting the negative sign.
-\frac{297}{40}+\frac{117}{8}
The opposite of -\frac{117}{8} is \frac{117}{8}.
-\frac{297}{40}+\frac{585}{40}
Least common multiple of 40 and 8 is 40. Convert -\frac{297}{40} and \frac{117}{8} to fractions with denominator 40.
\frac{-297+585}{40}
Since -\frac{297}{40} and \frac{585}{40} have the same denominator, add them by adding their numerators.
\frac{288}{40}
Add -297 and 585 to get 288.
\frac{36}{5}
Reduce the fraction \frac{288}{40} to lowest terms by extracting and canceling out 8.