Evaluate
7.2
Factor
\frac{2 ^ {2} \cdot 3 ^ {2}}{5} = 7\frac{1}{5} = 7.2
Share
Copied to clipboard
12.1\times \frac{9}{4}+15.4\left(-\frac{3^{2}}{4}\right)-6.5\left(-\frac{9}{4}\right)
Calculate -\frac{3}{2} to the power of 2 and get \frac{9}{4}.
\frac{121}{10}\times \frac{9}{4}+15.4\left(-\frac{3^{2}}{4}\right)-6.5\left(-\frac{9}{4}\right)
Convert decimal number 12.1 to fraction \frac{121}{10}.
\frac{121\times 9}{10\times 4}+15.4\left(-\frac{3^{2}}{4}\right)-6.5\left(-\frac{9}{4}\right)
Multiply \frac{121}{10} times \frac{9}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{1089}{40}+15.4\left(-\frac{3^{2}}{4}\right)-6.5\left(-\frac{9}{4}\right)
Do the multiplications in the fraction \frac{121\times 9}{10\times 4}.
\frac{1089}{40}+15.4\left(-\frac{9}{4}\right)-6.5\left(-\frac{9}{4}\right)
Calculate 3 to the power of 2 and get 9.
\frac{1089}{40}+\frac{77}{5}\left(-\frac{9}{4}\right)-6.5\left(-\frac{9}{4}\right)
Convert decimal number 15.4 to fraction \frac{154}{10}. Reduce the fraction \frac{154}{10} to lowest terms by extracting and canceling out 2.
\frac{1089}{40}+\frac{77\left(-9\right)}{5\times 4}-6.5\left(-\frac{9}{4}\right)
Multiply \frac{77}{5} times -\frac{9}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{1089}{40}+\frac{-693}{20}-6.5\left(-\frac{9}{4}\right)
Do the multiplications in the fraction \frac{77\left(-9\right)}{5\times 4}.
\frac{1089}{40}-\frac{693}{20}-6.5\left(-\frac{9}{4}\right)
Fraction \frac{-693}{20} can be rewritten as -\frac{693}{20} by extracting the negative sign.
\frac{1089}{40}-\frac{1386}{40}-6.5\left(-\frac{9}{4}\right)
Least common multiple of 40 and 20 is 40. Convert \frac{1089}{40} and \frac{693}{20} to fractions with denominator 40.
\frac{1089-1386}{40}-6.5\left(-\frac{9}{4}\right)
Since \frac{1089}{40} and \frac{1386}{40} have the same denominator, subtract them by subtracting their numerators.
-\frac{297}{40}-6.5\left(-\frac{9}{4}\right)
Subtract 1386 from 1089 to get -297.
-\frac{297}{40}-\frac{13}{2}\left(-\frac{9}{4}\right)
Convert decimal number 6.5 to fraction \frac{65}{10}. Reduce the fraction \frac{65}{10} to lowest terms by extracting and canceling out 5.
-\frac{297}{40}-\frac{13\left(-9\right)}{2\times 4}
Multiply \frac{13}{2} times -\frac{9}{4} by multiplying numerator times numerator and denominator times denominator.
-\frac{297}{40}-\frac{-117}{8}
Do the multiplications in the fraction \frac{13\left(-9\right)}{2\times 4}.
-\frac{297}{40}-\left(-\frac{117}{8}\right)
Fraction \frac{-117}{8} can be rewritten as -\frac{117}{8} by extracting the negative sign.
-\frac{297}{40}+\frac{117}{8}
The opposite of -\frac{117}{8} is \frac{117}{8}.
-\frac{297}{40}+\frac{585}{40}
Least common multiple of 40 and 8 is 40. Convert -\frac{297}{40} and \frac{117}{8} to fractions with denominator 40.
\frac{-297+585}{40}
Since -\frac{297}{40} and \frac{585}{40} have the same denominator, add them by adding their numerators.
\frac{288}{40}
Add -297 and 585 to get 288.
\frac{36}{5}
Reduce the fraction \frac{288}{40} to lowest terms by extracting and canceling out 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}