Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

12-\left(9\left(\sqrt{2}\right)^{2}-6\sqrt{2}\sqrt{6}+\left(\sqrt{6}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3\sqrt{2}-\sqrt{6}\right)^{2}.
12-\left(9\times 2-6\sqrt{2}\sqrt{6}+\left(\sqrt{6}\right)^{2}\right)
The square of \sqrt{2} is 2.
12-\left(18-6\sqrt{2}\sqrt{6}+\left(\sqrt{6}\right)^{2}\right)
Multiply 9 and 2 to get 18.
12-\left(18-6\sqrt{2}\sqrt{2}\sqrt{3}+\left(\sqrt{6}\right)^{2}\right)
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
12-\left(18-6\times 2\sqrt{3}+\left(\sqrt{6}\right)^{2}\right)
Multiply \sqrt{2} and \sqrt{2} to get 2.
12-\left(18-12\sqrt{3}+\left(\sqrt{6}\right)^{2}\right)
Multiply -6 and 2 to get -12.
12-\left(18-12\sqrt{3}+6\right)
The square of \sqrt{6} is 6.
12-\left(24-12\sqrt{3}\right)
Add 18 and 6 to get 24.
12-24+12\sqrt{3}
To find the opposite of 24-12\sqrt{3}, find the opposite of each term.
-12+12\sqrt{3}
Subtract 24 from 12 to get -12.
12-\left(9\left(\sqrt{2}\right)^{2}-6\sqrt{2}\sqrt{6}+\left(\sqrt{6}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3\sqrt{2}-\sqrt{6}\right)^{2}.
12-\left(9\times 2-6\sqrt{2}\sqrt{6}+\left(\sqrt{6}\right)^{2}\right)
The square of \sqrt{2} is 2.
12-\left(18-6\sqrt{2}\sqrt{6}+\left(\sqrt{6}\right)^{2}\right)
Multiply 9 and 2 to get 18.
12-\left(18-6\sqrt{2}\sqrt{2}\sqrt{3}+\left(\sqrt{6}\right)^{2}\right)
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
12-\left(18-6\times 2\sqrt{3}+\left(\sqrt{6}\right)^{2}\right)
Multiply \sqrt{2} and \sqrt{2} to get 2.
12-\left(18-12\sqrt{3}+\left(\sqrt{6}\right)^{2}\right)
Multiply -6 and 2 to get -12.
12-\left(18-12\sqrt{3}+6\right)
The square of \sqrt{6} is 6.
12-\left(24-12\sqrt{3}\right)
Add 18 and 6 to get 24.
12-24+12\sqrt{3}
To find the opposite of 24-12\sqrt{3}, find the opposite of each term.
-12+12\sqrt{3}
Subtract 24 from 12 to get -12.