Solve for x
x\leq -\frac{44}{15}
Graph
Share
Copied to clipboard
12\left(x+5\right)\leq \frac{4}{5}\times 31
Multiply both sides by 31. Since 31 is positive, the inequality direction remains the same.
12x+60\leq \frac{4}{5}\times 31
Use the distributive property to multiply 12 by x+5.
12x+60\leq \frac{4\times 31}{5}
Express \frac{4}{5}\times 31 as a single fraction.
12x+60\leq \frac{124}{5}
Multiply 4 and 31 to get 124.
12x\leq \frac{124}{5}-60
Subtract 60 from both sides.
12x\leq \frac{124}{5}-\frac{300}{5}
Convert 60 to fraction \frac{300}{5}.
12x\leq \frac{124-300}{5}
Since \frac{124}{5} and \frac{300}{5} have the same denominator, subtract them by subtracting their numerators.
12x\leq -\frac{176}{5}
Subtract 300 from 124 to get -176.
x\leq \frac{-\frac{176}{5}}{12}
Divide both sides by 12. Since 12 is positive, the inequality direction remains the same.
x\leq \frac{-176}{5\times 12}
Express \frac{-\frac{176}{5}}{12} as a single fraction.
x\leq \frac{-176}{60}
Multiply 5 and 12 to get 60.
x\leq -\frac{44}{15}
Reduce the fraction \frac{-176}{60} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}