Evaluate
8m+20n
Expand
8m+20n
Share
Copied to clipboard
12\left(\frac{2\left(m+2n\right)}{6}-\frac{m-3n}{6}+\frac{m+n}{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 6 is 6. Multiply \frac{m+2n}{3} times \frac{2}{2}.
12\left(\frac{2\left(m+2n\right)-\left(m-3n\right)}{6}+\frac{m+n}{2}\right)
Since \frac{2\left(m+2n\right)}{6} and \frac{m-3n}{6} have the same denominator, subtract them by subtracting their numerators.
12\left(\frac{2m+4n-m+3n}{6}+\frac{m+n}{2}\right)
Do the multiplications in 2\left(m+2n\right)-\left(m-3n\right).
12\left(\frac{m+7n}{6}+\frac{m+n}{2}\right)
Combine like terms in 2m+4n-m+3n.
12\left(\frac{m+7n}{6}+\frac{3\left(m+n\right)}{6}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6 and 2 is 6. Multiply \frac{m+n}{2} times \frac{3}{3}.
12\times \frac{m+7n+3\left(m+n\right)}{6}
Since \frac{m+7n}{6} and \frac{3\left(m+n\right)}{6} have the same denominator, add them by adding their numerators.
12\times \frac{m+7n+3m+3n}{6}
Do the multiplications in m+7n+3\left(m+n\right).
12\times \frac{4m+10n}{6}
Combine like terms in m+7n+3m+3n.
2\left(4m+10n\right)
Cancel out 6, the greatest common factor in 12 and 6.
8m+20n
Use the distributive property to multiply 2 by 4m+10n.
12\left(\frac{2\left(m+2n\right)}{6}-\frac{m-3n}{6}+\frac{m+n}{2}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 6 is 6. Multiply \frac{m+2n}{3} times \frac{2}{2}.
12\left(\frac{2\left(m+2n\right)-\left(m-3n\right)}{6}+\frac{m+n}{2}\right)
Since \frac{2\left(m+2n\right)}{6} and \frac{m-3n}{6} have the same denominator, subtract them by subtracting their numerators.
12\left(\frac{2m+4n-m+3n}{6}+\frac{m+n}{2}\right)
Do the multiplications in 2\left(m+2n\right)-\left(m-3n\right).
12\left(\frac{m+7n}{6}+\frac{m+n}{2}\right)
Combine like terms in 2m+4n-m+3n.
12\left(\frac{m+7n}{6}+\frac{3\left(m+n\right)}{6}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6 and 2 is 6. Multiply \frac{m+n}{2} times \frac{3}{3}.
12\times \frac{m+7n+3\left(m+n\right)}{6}
Since \frac{m+7n}{6} and \frac{3\left(m+n\right)}{6} have the same denominator, add them by adding their numerators.
12\times \frac{m+7n+3m+3n}{6}
Do the multiplications in m+7n+3\left(m+n\right).
12\times \frac{4m+10n}{6}
Combine like terms in m+7n+3m+3n.
2\left(4m+10n\right)
Cancel out 6, the greatest common factor in 12 and 6.
8m+20n
Use the distributive property to multiply 2 by 4m+10n.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}