Solve for y
y = -\frac{31}{14} = -2\frac{3}{14} \approx -2.214285714
Graph
Share
Copied to clipboard
\frac{12\times 19}{7}-2y=37
Express 12\times \frac{19}{7} as a single fraction.
\frac{228}{7}-2y=37
Multiply 12 and 19 to get 228.
-2y=37-\frac{228}{7}
Subtract \frac{228}{7} from both sides.
-2y=\frac{259}{7}-\frac{228}{7}
Convert 37 to fraction \frac{259}{7}.
-2y=\frac{259-228}{7}
Since \frac{259}{7} and \frac{228}{7} have the same denominator, subtract them by subtracting their numerators.
-2y=\frac{31}{7}
Subtract 228 from 259 to get 31.
y=\frac{\frac{31}{7}}{-2}
Divide both sides by -2.
y=\frac{31}{7\left(-2\right)}
Express \frac{\frac{31}{7}}{-2} as a single fraction.
y=\frac{31}{-14}
Multiply 7 and -2 to get -14.
y=-\frac{31}{14}
Fraction \frac{31}{-14} can be rewritten as -\frac{31}{14} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}