Solve for x
x=\ln(\frac{82817974522014550258408423595736849801612281185389443546420186410325491933012122303777028329685801938557337600000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000}{557246631433125119400517539349771820088806169833983801863613344536612309866614486161185938521534819949379274793736444717101467345272655337304971934020498509150962096306624840245699346917464266637558305441567221048547436208322994481064325771961541024804147990965933063390914214001})\approx 67.171189984
Solve for x (complex solution)
x=\ln(\frac{82817974522014550258408423595736849801612281185389443546420186410325491933012122303777028329685801938557337600000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000}{557246631433125119400517539349771820088806169833983801863613344536612309866614486161185938521534819949379274793736444717101467345272655337304971934020498509150962096306624840245699346917464266637558305441567221048547436208322994481064325771961541024804147990965933063390914214001})+i\times 200\pi n_{1}
n_{1}\in \mathrm{Z}
Graph
Share
Copied to clipboard
\frac{12}{6.13}=e^{0.01x}
Divide both sides by 6.13.
\frac{1200}{613}=e^{0.01x}
Expand \frac{12}{6.13} by multiplying both numerator and the denominator by 100.
e^{0.01x}=\frac{1200}{613}
Swap sides so that all variable terms are on the left hand side.
\log(e^{0.01x})=\log(\frac{1200}{613})
Take the logarithm of both sides of the equation.
0.01x\log(e)=\log(\frac{1200}{613})
The logarithm of a number raised to a power is the power times the logarithm of the number.
0.01x=\frac{\log(\frac{1200}{613})}{\log(e)}
Divide both sides by \log(e).
0.01x=\log_{e}\left(\frac{1200}{613}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=\frac{\ln(\frac{1200}{613})}{0.01}
Multiply both sides by 100.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}