Factor
-5\left(x-\frac{9-\sqrt{321}}{10}\right)\left(x-\frac{\sqrt{321}+9}{10}\right)
Evaluate
12+9x-5x^{2}
Graph
Share
Copied to clipboard
-5x^{2}+9x+12=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-9±\sqrt{9^{2}-4\left(-5\right)\times 12}}{2\left(-5\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-9±\sqrt{81-4\left(-5\right)\times 12}}{2\left(-5\right)}
Square 9.
x=\frac{-9±\sqrt{81+20\times 12}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-9±\sqrt{81+240}}{2\left(-5\right)}
Multiply 20 times 12.
x=\frac{-9±\sqrt{321}}{2\left(-5\right)}
Add 81 to 240.
x=\frac{-9±\sqrt{321}}{-10}
Multiply 2 times -5.
x=\frac{\sqrt{321}-9}{-10}
Now solve the equation x=\frac{-9±\sqrt{321}}{-10} when ± is plus. Add -9 to \sqrt{321}.
x=\frac{9-\sqrt{321}}{10}
Divide -9+\sqrt{321} by -10.
x=\frac{-\sqrt{321}-9}{-10}
Now solve the equation x=\frac{-9±\sqrt{321}}{-10} when ± is minus. Subtract \sqrt{321} from -9.
x=\frac{\sqrt{321}+9}{10}
Divide -9-\sqrt{321} by -10.
-5x^{2}+9x+12=-5\left(x-\frac{9-\sqrt{321}}{10}\right)\left(x-\frac{\sqrt{321}+9}{10}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{9-\sqrt{321}}{10} for x_{1} and \frac{9+\sqrt{321}}{10} for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}