Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-5x^{2}+9x+12=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-9±\sqrt{9^{2}-4\left(-5\right)\times 12}}{2\left(-5\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-9±\sqrt{81-4\left(-5\right)\times 12}}{2\left(-5\right)}
Square 9.
x=\frac{-9±\sqrt{81+20\times 12}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-9±\sqrt{81+240}}{2\left(-5\right)}
Multiply 20 times 12.
x=\frac{-9±\sqrt{321}}{2\left(-5\right)}
Add 81 to 240.
x=\frac{-9±\sqrt{321}}{-10}
Multiply 2 times -5.
x=\frac{\sqrt{321}-9}{-10}
Now solve the equation x=\frac{-9±\sqrt{321}}{-10} when ± is plus. Add -9 to \sqrt{321}.
x=\frac{9-\sqrt{321}}{10}
Divide -9+\sqrt{321} by -10.
x=\frac{-\sqrt{321}-9}{-10}
Now solve the equation x=\frac{-9±\sqrt{321}}{-10} when ± is minus. Subtract \sqrt{321} from -9.
x=\frac{\sqrt{321}+9}{10}
Divide -9-\sqrt{321} by -10.
-5x^{2}+9x+12=-5\left(x-\frac{9-\sqrt{321}}{10}\right)\left(x-\frac{\sqrt{321}+9}{10}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{9-\sqrt{321}}{10} for x_{1} and \frac{9+\sqrt{321}}{10} for x_{2}.