Solve for y (complex solution)
y=\frac{1}{12\left(x^{2}-5\right)}
x\neq -\sqrt{5}\text{ and }x\neq \sqrt{5}
Solve for y
y=\frac{1}{12\left(x^{2}-5\right)}
|x|\neq \sqrt{5}
Solve for x (complex solution)
x=-\frac{\sqrt{180+\frac{3}{y}}}{6}
x=\frac{\sqrt{180+\frac{3}{y}}}{6}\text{, }y\neq 0
Solve for x
x=\frac{\sqrt{180+\frac{3}{y}}}{6}
x=-\frac{\sqrt{180+\frac{3}{y}}}{6}\text{, }y\leq -\frac{1}{60}\text{ or }y>0
Graph
Share
Copied to clipboard
12y=\frac{1}{x^{2}-5}
Reorder the terms.
12y\left(x^{2}-5\right)=1
Multiply both sides of the equation by x^{2}-5.
12yx^{2}-60y=1
Use the distributive property to multiply 12y by x^{2}-5.
\left(12x^{2}-60\right)y=1
Combine all terms containing y.
\frac{\left(12x^{2}-60\right)y}{12x^{2}-60}=\frac{1}{12x^{2}-60}
Divide both sides by 12x^{2}-60.
y=\frac{1}{12x^{2}-60}
Dividing by 12x^{2}-60 undoes the multiplication by 12x^{2}-60.
y=\frac{1}{12\left(x^{2}-5\right)}
Divide 1 by 12x^{2}-60.
12y=\frac{1}{x^{2}-5}
Reorder the terms.
12y\left(x^{2}-5\right)=1
Multiply both sides of the equation by x^{2}-5.
12yx^{2}-60y=1
Use the distributive property to multiply 12y by x^{2}-5.
\left(12x^{2}-60\right)y=1
Combine all terms containing y.
\frac{\left(12x^{2}-60\right)y}{12x^{2}-60}=\frac{1}{12x^{2}-60}
Divide both sides by 12x^{2}-60.
y=\frac{1}{12x^{2}-60}
Dividing by 12x^{2}-60 undoes the multiplication by 12x^{2}-60.
y=\frac{1}{12\left(x^{2}-5\right)}
Divide 1 by 12x^{2}-60.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}