Solve for y
y=-\frac{57}{175}\approx -0.325714286
Graph
Share
Copied to clipboard
12y+\frac{18}{25}-5y=-\frac{39}{25}
Subtract 5y from both sides.
7y+\frac{18}{25}=-\frac{39}{25}
Combine 12y and -5y to get 7y.
7y=-\frac{39}{25}-\frac{18}{25}
Subtract \frac{18}{25} from both sides.
7y=\frac{-39-18}{25}
Since -\frac{39}{25} and \frac{18}{25} have the same denominator, subtract them by subtracting their numerators.
7y=-\frac{57}{25}
Subtract 18 from -39 to get -57.
y=\frac{-\frac{57}{25}}{7}
Divide both sides by 7.
y=\frac{-57}{25\times 7}
Express \frac{-\frac{57}{25}}{7} as a single fraction.
y=\frac{-57}{175}
Multiply 25 and 7 to get 175.
y=-\frac{57}{175}
Fraction \frac{-57}{175} can be rewritten as -\frac{57}{175} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}