Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}+12x=8
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-x^{2}+12x-8=8-8
Subtract 8 from both sides of the equation.
-x^{2}+12x-8=0
Subtracting 8 from itself leaves 0.
x=\frac{-12±\sqrt{12^{2}-4\left(-1\right)\left(-8\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 12 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\left(-1\right)\left(-8\right)}}{2\left(-1\right)}
Square 12.
x=\frac{-12±\sqrt{144+4\left(-8\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-12±\sqrt{144-32}}{2\left(-1\right)}
Multiply 4 times -8.
x=\frac{-12±\sqrt{112}}{2\left(-1\right)}
Add 144 to -32.
x=\frac{-12±4\sqrt{7}}{2\left(-1\right)}
Take the square root of 112.
x=\frac{-12±4\sqrt{7}}{-2}
Multiply 2 times -1.
x=\frac{4\sqrt{7}-12}{-2}
Now solve the equation x=\frac{-12±4\sqrt{7}}{-2} when ± is plus. Add -12 to 4\sqrt{7}.
x=6-2\sqrt{7}
Divide -12+4\sqrt{7} by -2.
x=\frac{-4\sqrt{7}-12}{-2}
Now solve the equation x=\frac{-12±4\sqrt{7}}{-2} when ± is minus. Subtract 4\sqrt{7} from -12.
x=2\sqrt{7}+6
Divide -12-4\sqrt{7} by -2.
x=6-2\sqrt{7} x=2\sqrt{7}+6
The equation is now solved.
-x^{2}+12x=8
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+12x}{-1}=\frac{8}{-1}
Divide both sides by -1.
x^{2}+\frac{12}{-1}x=\frac{8}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-12x=\frac{8}{-1}
Divide 12 by -1.
x^{2}-12x=-8
Divide 8 by -1.
x^{2}-12x+\left(-6\right)^{2}=-8+\left(-6\right)^{2}
Divide -12, the coefficient of the x term, by 2 to get -6. Then add the square of -6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-12x+36=-8+36
Square -6.
x^{2}-12x+36=28
Add -8 to 36.
\left(x-6\right)^{2}=28
Factor x^{2}-12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{28}
Take the square root of both sides of the equation.
x-6=2\sqrt{7} x-6=-2\sqrt{7}
Simplify.
x=2\sqrt{7}+6 x=6-2\sqrt{7}
Add 6 to both sides of the equation.