Solve for x
x=\sqrt{33}+6\approx 11.744562647
x=6-\sqrt{33}\approx 0.255437353
Graph
Share
Copied to clipboard
12x-3-x^{2}=0
Subtract x^{2} from both sides.
-x^{2}+12x-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{12^{2}-4\left(-1\right)\left(-3\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 12 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\left(-1\right)\left(-3\right)}}{2\left(-1\right)}
Square 12.
x=\frac{-12±\sqrt{144+4\left(-3\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-12±\sqrt{144-12}}{2\left(-1\right)}
Multiply 4 times -3.
x=\frac{-12±\sqrt{132}}{2\left(-1\right)}
Add 144 to -12.
x=\frac{-12±2\sqrt{33}}{2\left(-1\right)}
Take the square root of 132.
x=\frac{-12±2\sqrt{33}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{33}-12}{-2}
Now solve the equation x=\frac{-12±2\sqrt{33}}{-2} when ± is plus. Add -12 to 2\sqrt{33}.
x=6-\sqrt{33}
Divide -12+2\sqrt{33} by -2.
x=\frac{-2\sqrt{33}-12}{-2}
Now solve the equation x=\frac{-12±2\sqrt{33}}{-2} when ± is minus. Subtract 2\sqrt{33} from -12.
x=\sqrt{33}+6
Divide -12-2\sqrt{33} by -2.
x=6-\sqrt{33} x=\sqrt{33}+6
The equation is now solved.
12x-3-x^{2}=0
Subtract x^{2} from both sides.
12x-x^{2}=3
Add 3 to both sides. Anything plus zero gives itself.
-x^{2}+12x=3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+12x}{-1}=\frac{3}{-1}
Divide both sides by -1.
x^{2}+\frac{12}{-1}x=\frac{3}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-12x=\frac{3}{-1}
Divide 12 by -1.
x^{2}-12x=-3
Divide 3 by -1.
x^{2}-12x+\left(-6\right)^{2}=-3+\left(-6\right)^{2}
Divide -12, the coefficient of the x term, by 2 to get -6. Then add the square of -6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-12x+36=-3+36
Square -6.
x^{2}-12x+36=33
Add -3 to 36.
\left(x-6\right)^{2}=33
Factor x^{2}-12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{33}
Take the square root of both sides of the equation.
x-6=\sqrt{33} x-6=-\sqrt{33}
Simplify.
x=\sqrt{33}+6 x=6-\sqrt{33}
Add 6 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}