Solve for x
x=10y+\frac{28}{3}
Solve for y
y=\frac{x}{10}-\frac{14}{15}
Graph
Share
Copied to clipboard
12x=84+120y+28
Add 28 to both sides.
12x=112+120y
Add 84 and 28 to get 112.
12x=120y+112
The equation is in standard form.
\frac{12x}{12}=\frac{120y+112}{12}
Divide both sides by 12.
x=\frac{120y+112}{12}
Dividing by 12 undoes the multiplication by 12.
x=10y+\frac{28}{3}
Divide 112+120y by 12.
84+120y=12x-28
Swap sides so that all variable terms are on the left hand side.
120y=12x-28-84
Subtract 84 from both sides.
120y=12x-112
Subtract 84 from -28 to get -112.
\frac{120y}{120}=\frac{12x-112}{120}
Divide both sides by 120.
y=\frac{12x-112}{120}
Dividing by 120 undoes the multiplication by 120.
y=\frac{x}{10}-\frac{14}{15}
Divide 12x-112 by 120.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}