Solve for x
x=\frac{1}{2}=0.5
x = \frac{7}{3} = 2\frac{1}{3} \approx 2.333333333
x=-\frac{1}{2}=-0.5
Graph
Share
Copied to clipboard
±\frac{7}{12},±\frac{7}{6},±\frac{7}{4},±\frac{7}{3},±\frac{7}{2},±7,±\frac{1}{12},±\frac{1}{6},±\frac{1}{4},±\frac{1}{3},±\frac{1}{2},±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 7 and q divides the leading coefficient 12. List all candidates \frac{p}{q}.
x=\frac{1}{2}
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
6x^{2}-11x-7=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 12x^{3}-28x^{2}-3x+7 by 2\left(x-\frac{1}{2}\right)=2x-1 to get 6x^{2}-11x-7. Solve the equation where the result equals to 0.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 6\left(-7\right)}}{2\times 6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 6 for a, -11 for b, and -7 for c in the quadratic formula.
x=\frac{11±17}{12}
Do the calculations.
x=-\frac{1}{2} x=\frac{7}{3}
Solve the equation 6x^{2}-11x-7=0 when ± is plus and when ± is minus.
x=\frac{1}{2} x=-\frac{1}{2} x=\frac{7}{3}
List all found solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}