Factor
x\left(3x+13\right)\left(4x+1\right)
Evaluate
x\left(3x+13\right)\left(4x+1\right)
Graph
Share
Copied to clipboard
x\left(12x^{2}+55x+13\right)
Factor out x.
a+b=55 ab=12\times 13=156
Consider 12x^{2}+55x+13. Factor the expression by grouping. First, the expression needs to be rewritten as 12x^{2}+ax+bx+13. To find a and b, set up a system to be solved.
1,156 2,78 3,52 4,39 6,26 12,13
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 156.
1+156=157 2+78=80 3+52=55 4+39=43 6+26=32 12+13=25
Calculate the sum for each pair.
a=3 b=52
The solution is the pair that gives sum 55.
\left(12x^{2}+3x\right)+\left(52x+13\right)
Rewrite 12x^{2}+55x+13 as \left(12x^{2}+3x\right)+\left(52x+13\right).
3x\left(4x+1\right)+13\left(4x+1\right)
Factor out 3x in the first and 13 in the second group.
\left(4x+1\right)\left(3x+13\right)
Factor out common term 4x+1 by using distributive property.
x\left(4x+1\right)\left(3x+13\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}