Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

6\left(2x^{2}-x-3\right)
Factor out 6.
a+b=-1 ab=2\left(-3\right)=-6
Consider 2x^{2}-x-3. Factor the expression by grouping. First, the expression needs to be rewritten as 2x^{2}+ax+bx-3. To find a and b, set up a system to be solved.
1,-6 2,-3
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -6.
1-6=-5 2-3=-1
Calculate the sum for each pair.
a=-3 b=2
The solution is the pair that gives sum -1.
\left(2x^{2}-3x\right)+\left(2x-3\right)
Rewrite 2x^{2}-x-3 as \left(2x^{2}-3x\right)+\left(2x-3\right).
x\left(2x-3\right)+2x-3
Factor out x in 2x^{2}-3x.
\left(2x-3\right)\left(x+1\right)
Factor out common term 2x-3 by using distributive property.
6\left(2x-3\right)\left(x+1\right)
Rewrite the complete factored expression.
12x^{2}-6x-18=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 12\left(-18\right)}}{2\times 12}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 12\left(-18\right)}}{2\times 12}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-48\left(-18\right)}}{2\times 12}
Multiply -4 times 12.
x=\frac{-\left(-6\right)±\sqrt{36+864}}{2\times 12}
Multiply -48 times -18.
x=\frac{-\left(-6\right)±\sqrt{900}}{2\times 12}
Add 36 to 864.
x=\frac{-\left(-6\right)±30}{2\times 12}
Take the square root of 900.
x=\frac{6±30}{2\times 12}
The opposite of -6 is 6.
x=\frac{6±30}{24}
Multiply 2 times 12.
x=\frac{36}{24}
Now solve the equation x=\frac{6±30}{24} when ± is plus. Add 6 to 30.
x=\frac{3}{2}
Reduce the fraction \frac{36}{24} to lowest terms by extracting and canceling out 12.
x=-\frac{24}{24}
Now solve the equation x=\frac{6±30}{24} when ± is minus. Subtract 30 from 6.
x=-1
Divide -24 by 24.
12x^{2}-6x-18=12\left(x-\frac{3}{2}\right)\left(x-\left(-1\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3}{2} for x_{1} and -1 for x_{2}.
12x^{2}-6x-18=12\left(x-\frac{3}{2}\right)\left(x+1\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
12x^{2}-6x-18=12\times \frac{2x-3}{2}\left(x+1\right)
Subtract \frac{3}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
12x^{2}-6x-18=6\left(2x-3\right)\left(x+1\right)
Cancel out 2, the greatest common factor in 12 and 2.
x ^ 2 -\frac{1}{2}x -\frac{3}{2} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 12
r + s = \frac{1}{2} rs = -\frac{3}{2}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{1}{4} - u s = \frac{1}{4} + u
Two numbers r and s sum up to \frac{1}{2} exactly when the average of the two numbers is \frac{1}{2}*\frac{1}{2} = \frac{1}{4}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{1}{4} - u) (\frac{1}{4} + u) = -\frac{3}{2}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{3}{2}
\frac{1}{16} - u^2 = -\frac{3}{2}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{3}{2}-\frac{1}{16} = -\frac{25}{16}
Simplify the expression by subtracting \frac{1}{16} on both sides
u^2 = \frac{25}{16} u = \pm\sqrt{\frac{25}{16}} = \pm \frac{5}{4}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{1}{4} - \frac{5}{4} = -1 s = \frac{1}{4} + \frac{5}{4} = 1.500
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.