Solve for x
x=4
x=\frac{7}{12}\approx 0.583333333
Graph
Share
Copied to clipboard
12x^{2}-55x+28=0
Add 28 to both sides.
a+b=-55 ab=12\times 28=336
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 12x^{2}+ax+bx+28. To find a and b, set up a system to be solved.
-1,-336 -2,-168 -3,-112 -4,-84 -6,-56 -7,-48 -8,-42 -12,-28 -14,-24 -16,-21
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 336.
-1-336=-337 -2-168=-170 -3-112=-115 -4-84=-88 -6-56=-62 -7-48=-55 -8-42=-50 -12-28=-40 -14-24=-38 -16-21=-37
Calculate the sum for each pair.
a=-48 b=-7
The solution is the pair that gives sum -55.
\left(12x^{2}-48x\right)+\left(-7x+28\right)
Rewrite 12x^{2}-55x+28 as \left(12x^{2}-48x\right)+\left(-7x+28\right).
12x\left(x-4\right)-7\left(x-4\right)
Factor out 12x in the first and -7 in the second group.
\left(x-4\right)\left(12x-7\right)
Factor out common term x-4 by using distributive property.
x=4 x=\frac{7}{12}
To find equation solutions, solve x-4=0 and 12x-7=0.
12x^{2}-55x=-28
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
12x^{2}-55x-\left(-28\right)=-28-\left(-28\right)
Add 28 to both sides of the equation.
12x^{2}-55x-\left(-28\right)=0
Subtracting -28 from itself leaves 0.
12x^{2}-55x+28=0
Subtract -28 from 0.
x=\frac{-\left(-55\right)±\sqrt{\left(-55\right)^{2}-4\times 12\times 28}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, -55 for b, and 28 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-55\right)±\sqrt{3025-4\times 12\times 28}}{2\times 12}
Square -55.
x=\frac{-\left(-55\right)±\sqrt{3025-48\times 28}}{2\times 12}
Multiply -4 times 12.
x=\frac{-\left(-55\right)±\sqrt{3025-1344}}{2\times 12}
Multiply -48 times 28.
x=\frac{-\left(-55\right)±\sqrt{1681}}{2\times 12}
Add 3025 to -1344.
x=\frac{-\left(-55\right)±41}{2\times 12}
Take the square root of 1681.
x=\frac{55±41}{2\times 12}
The opposite of -55 is 55.
x=\frac{55±41}{24}
Multiply 2 times 12.
x=\frac{96}{24}
Now solve the equation x=\frac{55±41}{24} when ± is plus. Add 55 to 41.
x=4
Divide 96 by 24.
x=\frac{14}{24}
Now solve the equation x=\frac{55±41}{24} when ± is minus. Subtract 41 from 55.
x=\frac{7}{12}
Reduce the fraction \frac{14}{24} to lowest terms by extracting and canceling out 2.
x=4 x=\frac{7}{12}
The equation is now solved.
12x^{2}-55x=-28
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{12x^{2}-55x}{12}=-\frac{28}{12}
Divide both sides by 12.
x^{2}-\frac{55}{12}x=-\frac{28}{12}
Dividing by 12 undoes the multiplication by 12.
x^{2}-\frac{55}{12}x=-\frac{7}{3}
Reduce the fraction \frac{-28}{12} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{55}{12}x+\left(-\frac{55}{24}\right)^{2}=-\frac{7}{3}+\left(-\frac{55}{24}\right)^{2}
Divide -\frac{55}{12}, the coefficient of the x term, by 2 to get -\frac{55}{24}. Then add the square of -\frac{55}{24} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{55}{12}x+\frac{3025}{576}=-\frac{7}{3}+\frac{3025}{576}
Square -\frac{55}{24} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{55}{12}x+\frac{3025}{576}=\frac{1681}{576}
Add -\frac{7}{3} to \frac{3025}{576} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{55}{24}\right)^{2}=\frac{1681}{576}
Factor x^{2}-\frac{55}{12}x+\frac{3025}{576}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{55}{24}\right)^{2}}=\sqrt{\frac{1681}{576}}
Take the square root of both sides of the equation.
x-\frac{55}{24}=\frac{41}{24} x-\frac{55}{24}=-\frac{41}{24}
Simplify.
x=4 x=\frac{7}{12}
Add \frac{55}{24} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}