Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

12x^{2}-22x-x^{2}=-12
Subtract x^{2} from both sides.
11x^{2}-22x=-12
Combine 12x^{2} and -x^{2} to get 11x^{2}.
11x^{2}-22x+12=0
Add 12 to both sides.
x=\frac{-\left(-22\right)±\sqrt{\left(-22\right)^{2}-4\times 11\times 12}}{2\times 11}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 11 for a, -22 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-22\right)±\sqrt{484-4\times 11\times 12}}{2\times 11}
Square -22.
x=\frac{-\left(-22\right)±\sqrt{484-44\times 12}}{2\times 11}
Multiply -4 times 11.
x=\frac{-\left(-22\right)±\sqrt{484-528}}{2\times 11}
Multiply -44 times 12.
x=\frac{-\left(-22\right)±\sqrt{-44}}{2\times 11}
Add 484 to -528.
x=\frac{-\left(-22\right)±2\sqrt{11}i}{2\times 11}
Take the square root of -44.
x=\frac{22±2\sqrt{11}i}{2\times 11}
The opposite of -22 is 22.
x=\frac{22±2\sqrt{11}i}{22}
Multiply 2 times 11.
x=\frac{22+2\sqrt{11}i}{22}
Now solve the equation x=\frac{22±2\sqrt{11}i}{22} when ± is plus. Add 22 to 2i\sqrt{11}.
x=\frac{\sqrt{11}i}{11}+1
Divide 22+2i\sqrt{11} by 22.
x=\frac{-2\sqrt{11}i+22}{22}
Now solve the equation x=\frac{22±2\sqrt{11}i}{22} when ± is minus. Subtract 2i\sqrt{11} from 22.
x=-\frac{\sqrt{11}i}{11}+1
Divide 22-2i\sqrt{11} by 22.
x=\frac{\sqrt{11}i}{11}+1 x=-\frac{\sqrt{11}i}{11}+1
The equation is now solved.
12x^{2}-22x-x^{2}=-12
Subtract x^{2} from both sides.
11x^{2}-22x=-12
Combine 12x^{2} and -x^{2} to get 11x^{2}.
\frac{11x^{2}-22x}{11}=-\frac{12}{11}
Divide both sides by 11.
x^{2}+\left(-\frac{22}{11}\right)x=-\frac{12}{11}
Dividing by 11 undoes the multiplication by 11.
x^{2}-2x=-\frac{12}{11}
Divide -22 by 11.
x^{2}-2x+1=-\frac{12}{11}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=-\frac{1}{11}
Add -\frac{12}{11} to 1.
\left(x-1\right)^{2}=-\frac{1}{11}
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{-\frac{1}{11}}
Take the square root of both sides of the equation.
x-1=\frac{\sqrt{11}i}{11} x-1=-\frac{\sqrt{11}i}{11}
Simplify.
x=\frac{\sqrt{11}i}{11}+1 x=-\frac{\sqrt{11}i}{11}+1
Add 1 to both sides of the equation.