Factor
4\left(x-3\right)\left(3x+4\right)
Evaluate
4\left(x-3\right)\left(3x+4\right)
Graph
Share
Copied to clipboard
4\left(3x^{2}-5x-12\right)
Factor out 4.
a+b=-5 ab=3\left(-12\right)=-36
Consider 3x^{2}-5x-12. Factor the expression by grouping. First, the expression needs to be rewritten as 3x^{2}+ax+bx-12. To find a and b, set up a system to be solved.
1,-36 2,-18 3,-12 4,-9 6,-6
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -36.
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
Calculate the sum for each pair.
a=-9 b=4
The solution is the pair that gives sum -5.
\left(3x^{2}-9x\right)+\left(4x-12\right)
Rewrite 3x^{2}-5x-12 as \left(3x^{2}-9x\right)+\left(4x-12\right).
3x\left(x-3\right)+4\left(x-3\right)
Factor out 3x in the first and 4 in the second group.
\left(x-3\right)\left(3x+4\right)
Factor out common term x-3 by using distributive property.
4\left(x-3\right)\left(3x+4\right)
Rewrite the complete factored expression.
12x^{2}-20x-48=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 12\left(-48\right)}}{2\times 12}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 12\left(-48\right)}}{2\times 12}
Square -20.
x=\frac{-\left(-20\right)±\sqrt{400-48\left(-48\right)}}{2\times 12}
Multiply -4 times 12.
x=\frac{-\left(-20\right)±\sqrt{400+2304}}{2\times 12}
Multiply -48 times -48.
x=\frac{-\left(-20\right)±\sqrt{2704}}{2\times 12}
Add 400 to 2304.
x=\frac{-\left(-20\right)±52}{2\times 12}
Take the square root of 2704.
x=\frac{20±52}{2\times 12}
The opposite of -20 is 20.
x=\frac{20±52}{24}
Multiply 2 times 12.
x=\frac{72}{24}
Now solve the equation x=\frac{20±52}{24} when ± is plus. Add 20 to 52.
x=3
Divide 72 by 24.
x=-\frac{32}{24}
Now solve the equation x=\frac{20±52}{24} when ± is minus. Subtract 52 from 20.
x=-\frac{4}{3}
Reduce the fraction \frac{-32}{24} to lowest terms by extracting and canceling out 8.
12x^{2}-20x-48=12\left(x-3\right)\left(x-\left(-\frac{4}{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 3 for x_{1} and -\frac{4}{3} for x_{2}.
12x^{2}-20x-48=12\left(x-3\right)\left(x+\frac{4}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
12x^{2}-20x-48=12\left(x-3\right)\times \frac{3x+4}{3}
Add \frac{4}{3} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
12x^{2}-20x-48=4\left(x-3\right)\left(3x+4\right)
Cancel out 3, the greatest common factor in 12 and 3.
x ^ 2 -\frac{5}{3}x -4 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 12
r + s = \frac{5}{3} rs = -4
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{5}{6} - u s = \frac{5}{6} + u
Two numbers r and s sum up to \frac{5}{3} exactly when the average of the two numbers is \frac{1}{2}*\frac{5}{3} = \frac{5}{6}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{5}{6} - u) (\frac{5}{6} + u) = -4
To solve for unknown quantity u, substitute these in the product equation rs = -4
\frac{25}{36} - u^2 = -4
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -4-\frac{25}{36} = -\frac{169}{36}
Simplify the expression by subtracting \frac{25}{36} on both sides
u^2 = \frac{169}{36} u = \pm\sqrt{\frac{169}{36}} = \pm \frac{13}{6}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{5}{6} - \frac{13}{6} = -1.333 s = \frac{5}{6} + \frac{13}{6} = 3
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}